Pediatric EKG Interpretation

Laila Tutunji, MD

Introduction

What you need before you begin?
$\square 1$ Calculator

- 2 Percentile Charts (Harriet Lane, Davignon)
$\square 3$ Callipers are a plus

Introduction

\square Values are dynamic and change with age.

Introduction

$\square 12$ lead EKG

- Anatomy of an impulse

12 Lead ECG

- EKG is a voltmeter ie measures voltage which has magnitude and direction.
- Voltage displayed on the Y axis ($1 \mathrm{mV}=10 \mathrm{~mm}$) and time is displayed on the x axis (1 little block $=0.04$ seconds)

ECG Paper

ECG Lead Placement

ECG Lead Placement

ECG Lead Placement

12-Lead EKG Placement

Copyright (c) 1994-5, 1996, 1997 The Learning Company Inc. All Rights Reserved

QRS

Anatomy of an Impulse

Conducting System

- Network of specialized tissue that stimulates contraction
- Modified cardiac myocytes
- The heart can contract without any innervation

Electrical Conduction System

ECG Analysis

Always read an EKG systematically

1. Rhythm
2. Rate
3. QRS axis
4. Intervals :

- PR interval
- QRS duration
- QT interval

5. QRS amplitude, R/S ratio, abnormal Q waves
6. ST-segment and T wave abnormality

1. Rhythm

Sinus or not

- Sinus rhythm:
- P before every QRS
- P wave morphology
- Regular PR interval
\square Normal P wave Axis

1. Rhythm

\square P wave duration < 0.07 sec in infants, < 0.09 in children
\square LAH duration > 0.08 sec in infants and $>0.1 \mathrm{sec}$ in children

- P wave amplitude < 3 mm
$\square \mathrm{RAH}>3 \mathrm{~mm}$
- Combined atrial hypertrophy

FIG. 3-3.
Comparison of P axis in sinus rhythm (A), and low atrial rhythm (B). In sinus rhythm, the P waves are upright in leads I and aVF. In low atrial rhythm, the P wave is inverted in lead aVF,

2. Rate

FIG. 3-4.
ECG paper. Time is measured on the horizontal axis. Each $1 \mathrm{~mm}=0.04$ second, and each 5 mm (a large division) $=0.20$ second; 30 mm (or 6 large divisions) $=1.2$ second or $1 / 50$ minute. Every 7.5 cm marked on the top margin of the paper $=3.0$ second or $1 / 20$ minute. (From Park MK, Guntheroth WG: How to read pediatric ECGs, ed 3, St Louis, 1992, Mosby.)

2. Rate

$1 \mathrm{~mm}=0.04 \mathrm{sec}, 5 \mathrm{~mm}=0.2 \mathrm{sec}$
Measure between R - R'

- measure duration in seconds, Rate = 60/duration
- measure large divisions, Rate = 300/ number of large divisions
$\square 1$ minute $=60$ seconds, and 300 large divisions

2. Rate

FIG. 3-6.
Heart rate of 52 beats $/ \mathrm{min}$. There are 5.8 large divisions between the two arrows.
Therefore the heart rate is $300 \div 5.8=52$.

FIG. 3-7.
Quick estimation of heart rate. When the R-R interval is 5 mm , the heart rate is 300 beats $/ \mathrm{min}$. When the R-R interval is 10 mm , the rate is 150 beats $/ \mathrm{min}$, and so on.

2. Rate

FIG. 3-5.
Heart rate of 165 beats $/ \mathrm{min}$. There are about 3.3 cardiac cycles (R-R intervals) in six
large divisions. Therefore the heart rate is $3.3 \times 50=165$.

2. Rate

Count R-R cycles
\square In 6 large divisions, multiply cycles by 50

- In 3 seconds = marks on top margin of paper , multiply cycles by 20
Quick and easy; 300/150/100/75/60/50

Tachycardia and Bradycardia, check normal values for age.

3. QRS Axis

- Hexaxial System, Limb leads
- Frontal Plane
- Left vs right, superior and inferior
- Lead I left (positive) vs right (negative)
- AvF downward (positive) vs upward (negative)

3. Axis

FIG. 3-8.
Hexaxial (A) and horizontal (B) reference systems. (From Park MK, Guntheroth WG: How to read pediatric ECGs, ed 3, St Louis, 1992, Mosby.)

Horizontal Reference System

\square Right and left precordial leads

- V2 is perpendicular to V6
- V2 anterior (positive) posterior (negative)
- V6 left (positive) right (negative)
- V1 anterior and right (positive) posterior and left (negative)

The QRS axis is perpendicular to the lead with an equiphasic QRS complex in the predetermined quadrant.

Example: Determine the QRS axis in Fig. 3-11.
Step 1: The axis is in the left lower quadrant (i.e., 0 to +90 degrees), since the R waves are upright in leads I and aVF.

Step 2: The QRS complex is equiphasic in aVL. Therefore the QRS axis is +60 degrees, which is perpendicular to aVL.
(0) Lead

FIG. 3-10.
Locating quadrants of mean QRS axis from leads I and aVF. (From Park MK, Guntheroth WG: How to read pediatric ECGs, ed 3, St Louis, 1992, Mosby.)

3. Axis

FIG. 3-11,
Examples of the ECG strip (A) and the hexudial reference system (B),

3. QRS Axis

\square RAD, LAD look at normal ranges for age

- Superior Axis

DDX:

- Endocardial cushion defect
- Tricuspid atresia
\square RBBB
- Overlap with LAD may occur with Left anterior hemiblock

3. QRS Axis

Successive approximation method

- Locate a quadrant
- Locate an equiphasic QRS complex, The QRS axis will be perpendicular to the lead with the equiphasic complex i.e. Lead II and aVL, and Lead III and aVR

3. AXIS

FRONTAL
Copyright © 2008 Wolters Kluwer Health | Lippincott Williams \& Wilkins

3. Axis

-T Axis
QRS-T angle, > 60 unusual, >90 abnormal

- DDX:
- VH with strain
$\square \mathrm{V}$ conduction disturbances
- Myocardial dysfunction of a metabolic or ischemic nature

4. Intervals

PR Interval QRS Duration and QTC Interval

PR Interval

- PR interval
- Varies with age and rate
- Increases with age and decreases with rate

First Degree Heart Block

4. Intervals

- Increased PR interval, DDx
- First degree AV block
- Myocarditis, rheumatic or viral
- Digitalis toxicity
-ECD, ASD, Ebsteins's anomaly

4. Intervals

- Decreased PR interval, DDx:
\square Preexcitation
- WPW
- Lown-Ganong-Levine

4. Intervals

- QRS duration
- Increases with age
- Ventricular conduction Disturbances
\square Ventricular rhythms

QRS Duration

FIG. 3-18.
Schematic diagram of three types of ventricular conduction disturbances. A, Normal QRS complexes. B, QRS complex in RBBB or PVCs with prolongation of the QRS duration in the terminal portion (black arrows, terminal slurring). C, A preexcitation with delta wave (open arrow, initial slurring). D, Intraventricular block in which the prolongation of the QRS complex is throughout the duration of the QRS complex.

QRS Duration

\square Initial slurring: Preexcitation, WPW
\square Ventricular Conduction Disturbances
\square Terminal slurring: RBBB, LBBB

- Diffuse slurring: Intraventricular block Hyperkalemia, procainamide, quinidine, myocardial fibrosis, myocardial dysfunction of metabolic or ischemic nature

Preexcitation

- WPW
\square Short PR interval < 0.1 (check tables)
- Delta waves, initial slurring of QRS
\square Wide QRS duration
- May mimic VH or RBBB

Pre-excitation WPW

Wolff-Parkinson - White Syndrome

Nomally the P-R segment has a little flat space between the P wave and QRS (see A.)

With WPW, the little space between the P and QRS slopes upward joining to the QRS. This is called a "Delta Wave" (see B.)

Ventricular Conduction Disturbances

\square Initial Slurring
Preexcitation

- Diffuse Slurring

Intraventricular block
\square Terminal Slurring
Vent rhythm, RBBB, LBBB

Ventricular Rhythm

RBBB

- Terminal Slurring is right and anterior
- RAD for terminal portion
- Prolonged QRS duration
- Wide slurred S in I, V5 V6
\square Terminal slurred R' in aVR, V4R, V1, V2
-T waves inversion common in adults, but not in children

RBBB

RBBB and LBBB

AI Left werntrioular hrpeertroplys (LVFHI

Bl Ragie vemticulst Itrpertropity (finti)

QRS duration

- Ventricular Rhythms:
- Premature Ventricular Conctractions
- Ventricular Tachycardia
- Implanted Ventricular Pacemaker

QTc interval

\square QTc $=$ QT $/ \sqrt{ }$ R-R interval
$\square<0.44$
$\square<0.49$ in infants

QTc

QTc Interval

- Increased QTc DDX;

Cardiac Causes:

- Myocarditis, diffuse myocardial disease (hypertrophic and dilated cardiomyopathy)
- Long QT syndrome (Jervell and Lange Nielsen , Romano-Ward syndrome

Prolonged QTc Interval

None cardiac causes:

- Hypocalcemia, head trauma, malnutrition
- Drugs;

Antibeotics (Amp, Em,TMP-Sulfa, Amantadine) Anti psychotic (phenothiazines) Anti depressants (tricyclic) Anti histamines (Seldane) and Anti arrhythmic drugs, arsenics, organophosphates

Decreased QT

- Digitalis effect
- Hypercalcemia

5. Forces and R-R Progression

Hypertrophy

- RPL V3R, V4R, V1
- LPL V5, V6, V7
-BVL V2-V4
- QRS Axis:

Directed towards the hypertrophied lead, more seen with RVH

Hypertrophy

- QRS voltage:
\square Increases in the direction of the respective ventricle.
- Normal QRS duration
- LVH increased R voltages in Leads I, II, aVL, sometimes aVF and III, tall R's in V57 with deep S's in V1-2 and V3R and V4R

Hypertrophy

\square RVH increased R in aVR and III, and deep S in lead I, increased R in V1-2, V3R and V4R and deep S's in V5-6

Hypertrophy

- R/S ratio
- Maybe just change in ratio without change in absolute voltages.
\square R/S ratio increase in RPL and decrease in LPL = RVH
$\square \mathrm{R} / \mathrm{S}$ ratio increase in LPL and decrease in RPL = LVH

Hypertrophy

\square Changes in T Axis

- Abnormal T axis with increased QRS-T angle = strain
- Upright T waves in RPL after day 3 of life and up to adolescence = strain
\square Inverted T waves in LPL = strain

Hypertrophy

- Q waves
- Abnormal Q waves are either deep or wide or both.
- Q waves are normally present in LPL and absent in RPL
- Deep and wide Q's are present in myocardial incfarction
- Deep Q's are present in volume overload VH
- Presence of Q's in RPL (RVH or V inversion) Absence in LPL (LBBB or V inversion)

RVH

\square RVH

RVH

Right ventricular hypertrophy Right ventricular hypertrophy due, in this case, to primary pulmonary hypertension. The characteristic features include marked right axis deviation ($+210^{\circ}$ which is equal to -150°), tall R wave in V1 (as part of a QR complex), delayed precordial transition zone with prominent 5 waves in leads V5 and V6, inverted T waves and ST depression in V1 to V3 consistent with right ventricular "strain", and peaked P waves in lead II consistent with concomitant right atrial enlargement.

RVH

RAD
Normal QRS duration and increased voltages in RPL, tall R in V1-2, aVR and deep S's in lead I, V6
R/S ratio increased in RPL, decreased in LPL
q in V1 (qR or qRs)
rsR', or rR' where R^{\prime} is always > R
T waves upright in RPL with strain

LVH

LVH

LVH

LVH

- LAD
\square Tall R in lead I, II, aVL, aVF, V5, V6
- Deep S's in V1, V2
$\square \mathrm{R} / \mathrm{S}$ increased in LPL and decreased in RPL
- Deep Q in V5, V6 > 5 mm , and tall symmetric T waves (LV diastolic overload)
\square Inverted T waves in lead I, aVF and V5-6 = strain

CVH

- Presence of RVH and LVH criteria
\square Positive criteria for RVH or LVH and large voltages for the other
- Large equiphasic QRS complexes in 2 or more limb leads and the mid precordial leads

Ischemia

ECG CHANGES IN ACUTE MYOCARDIAL ISCHEMIA, INJURY, AND INFARCTION
Typically, three phenomena may occur on the ECG that are characteristic of the evolution of a myocardial infarction (MI):

1. T wave inversion, indicating ischemia.
2. S-T segment elevation, indicating injury and the acuteness of the MI.
3. The presence of an abnormal Q wave, indicating tissue death [necrosis).

The above abnormalities are usually seen in the ECG leads representing the area of damage.

ST Segments

- Up to 1 mm elevation or depression is acceptable in children
- Examples of nonpathologic ST segment shift: Early repolarization, J point depression

ST Segment

Abnormal ST-Segments

FIG. 27-1.
Nonpathologic (nonischemic) and pathologic (ischemic) ST-segment and T-wave changes. A, characteristic nonischemic ST-segment change called J-depression; note that the ST slope is upward. B and C, Examples of pathologic ST-segment changes: note that the downward slope of the ST-segment (B) or the horizontal segment is sustained (C). (From Park MK, Guntheroth WG: How to read pediatric ECGs, ed 3, St Louls, 1992, Mosby.)

St Segment

\square Pathologic depression;
\square Downward slant with a diphasic or inverted T wave
\square Horizontal elevation or depression sustained for over 0.08 seconds
\square ST depression; hypertrophy, strain, ischemia, digoxin effect

- ST elevation; pericarditis, injury

T waves

- $<1 / 2$ of QRS
\square Positive in I, II, aVL, V4-6
- Negative in aVR, V3R, V1-2
- Abnormal inverted T waves: ischemia, hypertrophy and hyperventilation
- Flattened T waves: hypokalemia
- Peaked T waves : hyperkalemia, ventricular hypertrophy or BBB

Normal Infant ECG

New born RVH

- QRS Axis> 180
$\square R$ waves in aVR>8mm, pure R in $\mathrm{V} 1>10$ mm , and R wave in $\mathrm{V} 1>25 \mathrm{~mm}$
$\square S$ wave in lead l> 12 mm
\square qR pattern in V1
- Upright T waves in RPL

Early Repolarization

