Yacoub M. Irshaid, MD, PhD, ABCP Department of Pharmacology

1

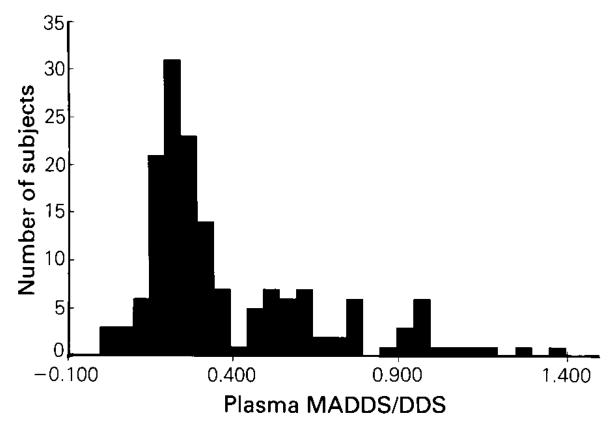
- Pharmacogenetics is the science of understanding how genetic variability influences drug treatment outcomes.
- It generally refers to the effects of a single genetic marker.

- Pharmacogenomics is broader in context, referring to the collective influence of variability across the genome to modulate an individual's drug response profile.
- It refers to the effect of multiple genes.
- Some times these 2 terms are used interchangeably.

- Genomic Variations led to the concept of "Personalised Medicine".
- Variation can be caused by different concentrations at sites of drug action – pharmacokinetic variation.
- Or by different responses to the same drug concentration – pharmacodynamics variation.

- In these cases, dose adjustment is needed to meet the individual needs.
- Inter-individual variation in response to some drugs is a serious problem; if not taken into account.
- It can result in lack of or reduced effect or unexpected adverse effects.

 Additive or synergistic influence of multiple gene variants can interact with environmental factors to result in a wide spectrum of interindividual variation in drug response.


Inherited Variation in Pharmacokinetics

- A. Drug absorption disorders:
- Genetic defects in the "intrinsic factor" lead to impairment of vitamin B₁₂ absorption → megaloblastic anemia.
- **B. Drug metabolism disorders:**
- If a drug metabolizing enzyme is deficient, the drug will accumulate → adverse effects, which can be prevented by giving a smaller dose.

- 1. Acatalasia:
- Lack of catalase in tissues and RBCs.
- H_2O_2 application \rightarrow local tissue damage.
- Inherited in an autosomal recessive fashion.

- 2. Atypical plasma cholinesterase:
- Failure to hydrolyze succinylcholine, a muscle relaxant used during surgery, → prolonged apnea that needs assisted ventilation until recovery.
- It affects mivacurium also.
- Inherited in an autosomal recessive fashion.

- **3. Genetic deficiency in acetylation:**
- Any given population can be divided into "slow" and "rapid" acetylators. Or "slow" "intermediate" and "rapid" acetylators.
- Slow acetylation is inherited in an autosomal recessive fashion.
- It affects 60-70% of the population.

Figure 2 Frequency distribution histogram of the plasma monoacetyldapsone to dapsone ratio in 160 unrelated Jordanian subjects.

Examples of Drugs Affected

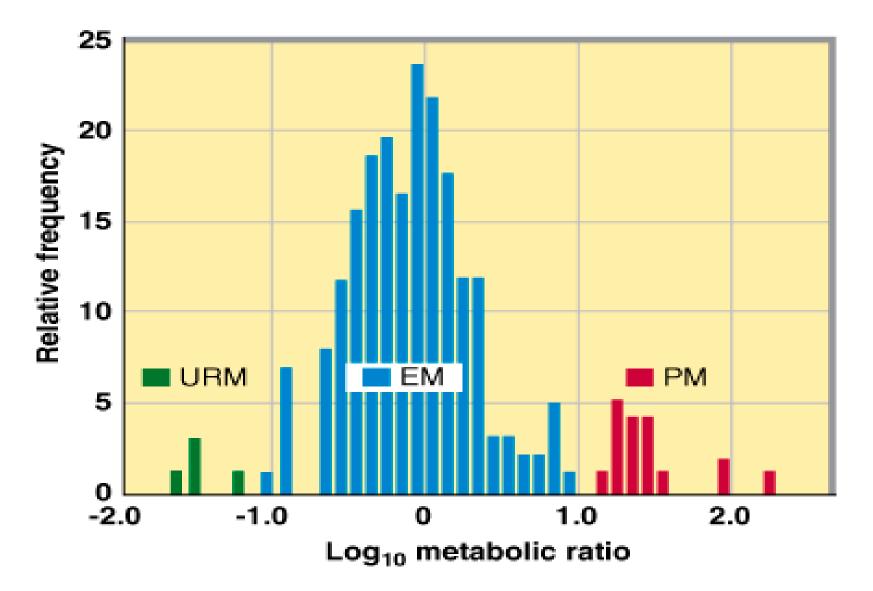
 Caffeine, Clonazepam, Nitrazepam, Dapsone, Hydralazine, Isoniazid, Procainamide, Phenelzine, Sulfonamides.

Clinical Consequences of Acetylation Polymorphism

- 1. Slow acetylators of dapsone and sulfonamides may develop hemolytic anemia.
- This is because of deficiency in acetylation, allowing an alternative pathway of metabolism to predominate.
- Cytochromes P450 oxidize these drug to the hydroxylamine, which binds covalently to cells producing cellular toxicity.

Clinical Consequences of Acetylation Polymorphism

- 2. Slow acetylators of hydralazine and procainamide may develop drug-induced lupus erythematosus (autoimmune disease).
- 3. Rapid acetylators of procainamide produce excessive concentrations of Nacetlprocainamide (NAPA), which causes QT prolongation and life-threatening ventricular arrhythmias.


Clinical Consequences of Acetylation Polymorphism

- 4. Slow acethators of isoniazid will have accumulation of the drug, which inhibits activation of pyridoxine to pyridoxal phosphate.
- This leads to neurotoxicity, which is preventable by vitamin B6 administration.
- Dose of isoniazid should be reduced, or the interval between administrations prolonged.
- Rapid acetylators of isoniazid may have
 ¹⁵ therapeutic failure.

- 5. Polymorphic oxidation:
- Involves deficiencies in cytochrome P450.
- All are inherited in an autosomal recessive fashion.

CYP2D6 (Debrisoquine Hydroxylase)

- Highly polymorphic
- 200-fold variability in the metabolism of > 100 drugs
- Metabolizes 25-30% of clinically used drugs
- Involved in the metabolism of ~ 50% of all psychoactive drugs.
- The population can be divided into ultrarapid, extensive, intermediate or poor metabolizers.
- 1, It affects 7% of the population.

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology,* 11th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Examples of Drugs Affected

- 1. <u>β-Blockers: Metoprolol</u>, Propranolol
- 2. <u>Antiarrhythmics</u>: Propafenone, Mexiletine, Lidocaine.
- 3. Antihypertensives: Debrisoquine, R-Carvedilol.
- 4. <u>Neuroleptics</u>: Fluphenazine, Thioridazine, Clozapine, Risperidone.
- 5. <u>Antitussives:</u> Dextromethorphan.
- 6. <u>Tricyclic antidepressants</u>: Desipramine, Imipramine, Tomoxetine, Doxepin.

CYP2D6 Substrates (Contd)

- 6. <u>MAOIs:</u> Methoxyphenamine
- 7. <u>SSRIs:</u> Paroxetine, Fluoxetine, Citalopram.
- 8. <u>Opioids:</u> Codeine, Hydrocodone,
- 9. <u>Miscellaneous:</u> Methoxyamphetamine, Diltiazem, Simvastatin, Chlopheniramine, Metoclopramide.
- Inhibitors: Quinidine, Tamoxifen, Chlopromazine

CYP2C19 (Mephenytoin Hydroxylase)

- PMs had increased somnolence and intellectual impairment after mephenytoin.
- Concentration in PMs was ~ 2 times higher than in EMs.
- It affects 4-5% of the population.

Examples on Drugs Affected

 S-Mephenytoin, Diazepam, Amitriptyline, Imipramine, Citalopram, Proguanil, Chloroguanide, Propranolol, Omeprazole, Lansoprazole, R-Methadone.

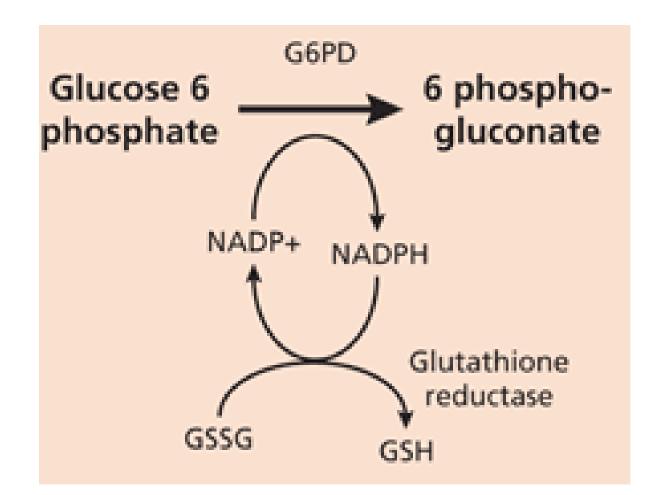
CYP2C9 Polymorphism

- The population can be divided into "poor", "intermediate" and "extensive" (normal) metabolizers.
- Affects the metabolism of NSAIDs (ibuprofen, piroxicam, celocoxib ...) and fluoxetine, losartan, phenytoin, tolbutamide, torsemide, S-warfarin.
- It affects 10-20% of the Caucasian population.

- **1. Hereditary Warfarin Resistance:**
- True warfarin resistance is rare (< 0.1%).
- Associated with need for high warfarin doses to have therapeutic effect.
- Patients need much smaller doses of vitamin K to reverse the effect of warfarin.
- Warfarin does not irreversibly inhibit vitamin K₁ 2,3-epoxide reductase.
- Inherited in an autosomal dominant fashion.

- 2. Heparin Resistance Causes:
- A. Inherited antithrombin III deficiency.
- B. Acquired antithrombin III deficiency: Hepatic cirrhosis, Nephrotic syndrome & DIC (dissiminated intravascular coagulation).
- **C. Pregnancy:** Elevated factor VIII. Prolongs aPTT (apparent resistance).

- **D. Oral contraceptives:** Elevated factor V-Leiden.
- E. Thrombocytosis.
- F. High levels of basic heparin-binding proteins in plasma: (Histidine-rich glycoproteins, Vitronectin, Platelet factor-4).


3. Vitamin D resistance: Patients develop rickets despite adequate vitamin D. 1000X the normal dose is needed to treat rickets in this case.

- 4. Favism (drug-induced hemolytic anemia):
- Due to glucose-6-phophate dehydrogenase (G6PD) deficiency
- Two types:
 - a. African type (10% of population): confers partial resistance to malaria.
 - b. Mediterranian type (more severe).

Favism

- Deficiency of G6PD leads to deficiency in NADPH,H⁺, which is needed for regeneration of reduced glutathione (GSH), which is needed to protect cells against oxidative stress.
- The deficiency is sex-linked co-dominant.
- Co-dominance means that both allelomorphic genes in a heterozygous individual have equal importance.

Favism

Favism

Drugs Involved:

- Sulfonamides and dapsone.
- Antimalarial drugs: primaquine
- Antibacterial agents: nitrofurantoin, paminosalicylic acid.
- Others.

- 5. Malignant Hyperthermia with Muscle Rigidity:
- Uncontrolled rise in body temperature during anesthesia (> 2°C/hour).
- Implicated drugs: halothane and succinylcholine.
- Mortality rate 50-60%.
- May be due to a disturbance in the intracellular distribution of Ca²⁺.

- Inherited in an autosomal dominant fashion.
- Once it starts to happen, stop administration of the drugs, support vital signs, and give dantrolene which improves intracellular distribution of Ca²⁺.

- 6. Glaucoma due to abnormal response to intraocular steroids, or long-term use of systemic steroids.
- Occurs in 5% of USA population.
- Inherited in autosomal recessive fashion.