Preterm Baby Part 1

Eman Badran Professor of Pediatrics Fifth year medical students 2022-2023

November 17th is World Prematurity Day

 November 17th has been established as <u>World Prematurity Day</u>. On this day, efforts are made to increase awareness of the health risks associated with preterm birth and how to reduce them.

Objectives

- Definition to Understand What is preterm baby?
- UNDERSTAND THE Definitions (LBW. SGA, LAG. AGA)
- Understand the Disease Burden
- Understand the characteristics of preterm baby
- Identify the Causes of preterm baby
- UNDERSTAND Prevention OF PRETEM
 COMPLICATIONS
- UNDERSTAND THE ACUTE AND LONG TERM Complications

What is preterm baby?

Preterm birth:

WHO definition

- A baby born before 37 weeks of pregnancy
 - Baby before 259 From first day of LMP
- Preterm labor : Uterine contraction < 37 weeks

Defenetions

Birth weight

Summaury of **Definition**

• Gestation

- term: \geq 37 completed weeks' gestation
- preterm: < 37 completed weeks' gestation
- post-term: > 42 completed weeks' gestation

• Gestation

- term: \geq 37 completed weeks' gestation
- preterm: < 37 completed weeks' gestation
- post-term: > 42 completed weeks' gestation
- Birth weight
 - low birth weight (LBW): < 2500 g
 - very low birth weight (VLBW): < 1500 g
 - extremely low birth weight (ELBW): < 1000 g

Fig. 11.2.1 Common definitions of size at birth, illustrating the difference between intrauterine growth restriction (IUGR) and small for gestational age (SGA). Baby A is an appropriately grown term baby. Baby B is also born with an appropriate size for gestational age (AGA), but has suffered reduced intrauterine growth compared with baby A and thus has IUGR. Baby C has had normal intrauterine growth, but is born SGA.

Summaury of **Definition**

• Gestation

- term: \geq 37 completed weeks' gestation
- preterm: < 37 completed weeks' gestation
- post-term: > 42 completed weeks' gestation

Definitions (LBW. SGA, LAG. AGA)

International Newborn Size Reference Charts for Very Preterm Infants (Boys)

Definitions (LBW. SGA, LAG. AGA)

definitions

Objectives

- What is preterm baby?
- Definitions (SGA, LAG. AGA, LBW)
- Disease Burden
- characteristics of preterm baby
- Causes of preterm baby
- Prevention
- Complications
- prognosis

Incidence

Jordan Data source : J-SANDS 2019-2020

JORDAN STILLBIRTHS AND NEONATAL DEATHS SURVEILLANCE AND

AUDITING SYSTEM

Jordan	Po			eriod			
	Com	plete	Partial		Before COVID-19		
	lockdown		lockdown				Total
2020-2021	Mid March	n-April/2020	May2020-Apri2021		April2019-mid-march202		N = 31106
JSANDS data	n =	2181	n = 13614				
					0n =	15311	
	n	%	n	%	n	%	Ν
Gestational age						\frown	
Extremely	20	0.9%	69	0.5%	100	0.7%	189
preterm (less than							
28 weeks)						\frown	
Very preterm (28	21	1.0%	174	1.3%	202	1.3%	397
to 32 weeks)							
Moderate to late	174	8.0%	1149	8.4%	1380	9.0%	2703
preterm (32 to 37							
weeks)						\frown	
Full term	1966	90.1%	12222	89.8%	13629	89.0%	27817

JORDAN	Period						
	Com	plete	Partial lo	Partial lockdown		Before COVID-19	
	lock	down	n = 1	n = 13614		n = 15311	
	n =	2181					
							N = 31106
	n	%	n	%	n	%	Ν
Birth weight						\frown	
Normal birth weight	1941	89.0%	12017	88.3%	13400	87.5%	27358
Low birth weight	192	8.8%	1388	10.2%	1478	9.7%	3058
Very low birth weight	30	1.4%	138	1.0%	200	1.3%	368
Extremely low birth weight	18	0.8%	71	0.5%	233	1.5%	322
SGA							
Νο	1956	89.7%	12153	89.3%	13818	90.2%	27927
Yes	225	10.3%	1461	10.7%	1493	9.8%	3179

USA

IN 2014, 1 OF EVERY 10 BABIES WAS BORN PREMATURE IN THE UNITED STATES 응유유유유유유유유유

Disease burden

Lead to neonatal Death

Neonatal Mortality rate

Defenition

Neonatal death /1000Live newborn (first 28 days of life)

Under five year mortality Rate

Source of data

What is Jordan neonatal mortality rate?

Perinatal and Neonatal Mortality in Jordan

Yousef S. Khader, Mohammad Alyahya, and Anwar Batieha

Neonatal Mortality In Jordan

(according to Gestation age and birth weight)

Source: J-SANDS: Jordan Stillbirths and Neonatal Deaths

Surveillance and Auditing System

study 2019

_	Inclusion criteria	NMR
	If > 24 weeks GA	14.7/1000 live birth
_	> 28 week and > 1 kg	10.5 /1000 live birth*

Perinatal and Neonatal Mortality in Jordan

May 2019

DOI:

10.1007/978-3-319-74365-3_161-1

In book: Handbook of Healthcare in the Arab World

Publisher: Springer

https://www.researchgate.net/publication/333295581_Perinatal_and_Neonatal_Mortality_in_Jordan Project:

J-SANDS: Jordan Stillbirths and Neonatal Deaths Surveillance and Auditing System

Neonatal Mortality In Jordan

(according to Gestation age)

•	GA	NMR
	> 37 week	4/1000
	< 37 week	123/1000

Turk J Obstet Gynecol. 2017 Mar;14(1):28-36. doi: 10.4274/tjod.62582. Epub 2017 Mar 15. The incidence, risk factors, and mortality of preterm neonates: A prospective study from Jordan (2012-2013). Abdel Razeq NM¹, Khader YS², Batieha AM Perinatal and Neonatal Mortality in Jordan

Yousef S. Khader, Mohammad Alyahya, and Anwar Batieha

Neonatal Mortality In Arab Countries

Country	NMR	Year	Source
Australia	2.2/1000 live birth	2020	Unicef
Jordan	14.7/1000 live birth		JSANDS
Syria	10.5 /1000 live birth	2019	World bank
Libya	6 /1000 live birth	2019	UNICEF
Saudi Arabia	3.6 /1000 live birth	2019	
Lebanon	4.2/1000 live birth	2019	UNICEF

https://data.unicef.org/resources/data_explorer/unicef_f/?ag=UNICEF&df=GLOBAL_DATAFLOW&ver=1.0& dq=.CME_TMM0+CME_PND+CME_MRM0..&startPeriod=2016&endPeriod=2021

Check

In Jordan

Significance of preterm In Jordan

Causes of Neonatal mortality In Jordan

1- Congenital malformation

2- prematurity (ie second leading cause)

Cost: first 4-5days around 700-1200 JOD/day Then 150-250JOD/day

Disability

< 26 weeks – 60% have disability

Level, Causes and Risk Factors of Neonatal Mortality, in Jordan: Results of a National Prospective Study.

Batieha AM¹ ^{EE} , Khader YS² , Berdzuli N³, Chua-Oon C³, Badran EF⁴ , Al-Sheyab NA⁵, Basha AS⁶, Obaidat A⁷, Al-Qutob RJ⁸

Author information **•**

Maternal and Child Health Journal, 01 May 2016, 20(5):1061-1071

https://europepmc.org/article/med/26645614

Classification of preterm based on **Based on:** gestational age

Classification of preterm based on Based on gestational age

Pictures

- Extreme prematurity:
 - less than 28 weeks' gestation

- Late-preterm infants :
 - 34⁺⁰ to 36⁺⁶ weeks' gestation

Late preterm Gestation age between 34⁺⁰ - complete 36⁺⁰⁶ weeks Don't deliver late-preterm infants unless medically indicated

should not be delivered unless there is an accepted maternal or fetal indication for delivery, according to a new ACOG Committee Opinion.

Late-preterm infants-those born between 34 weeks and zero days and 36 weeks and six days of gestation-are often mistakenly believed to be as physiologically and metabolically mature as term infants. However, latepreterm infants are at higher risk than term infants are of developing numerous substantial medical complications, resulting in higher rates of infant mortality, morbidity before initial hospital discharge, and hospital readmission in the first months of life.

that were late-preterm births increased by 16%," said Ann R. Stark, MD, the American Academy of Pediatrics liaison to the ACOG Committee on Obstetric Practice. "Women and physicians need to be careful that when scheduling cesarean deliveries or inductions.

ATE-PRETERM INFANTS they do so only when maternal or fetal indications exist, such as preeclampsia or a nonreassuring fetal status."

> Collaborative counseling by both obstetric and neonatal clinicians about the outcomes of late-preterm births is warranted unless precluded by emergent conditions, according to the Committee Opinion Late-Preterm Infants, which was published in the April issue of Obstetrics & Gynecology. Much of the Committee Opinion contains information on the health risks these infants face, as outlined in guidelines by the American Academy of **Pediatrics**

Late-preterm infants are four times more likely than term infants are to have at least "In the last decade, the proportion of births one medical condition diagnosed and three and a half times more likely to have two or more conditions diagnosed, according to the Committee Opinion. Late-preterm infants are more likely to be diagnosed with temperature instability, hypoglycemia, respiratory distress, apnea, jaundice, and feeding difficulties, Q

Late preterm babies usually **appear healthy at birth** but may have:

- more difficulties adapting than full-term babies.

- -They may have trouble maintaining their body temperature.
- -They often have **difficulty with breastfeeding** and b**ottle feeding**.
- -May have breathing difficulties

-These infants are also at higher **risk for infections and jaundice**, and should be watched for signs of these conditions.

(Wang, Dorer, Fleming, Catlin, 2004 in 2012; Engle, Tomashek, & Wallman, 2007 in 2012 in Lipkind, Slopen, Pfeiffer, & McVeigh, 2012)

Objectives

- What is preterm baby?
- Definitions (LBW. SGA, LAG. AGA)
- Disease Burden
- characteristics of preterm baby
- Causes of preterm baby
- Prevention
- Complications
- prognosis

low birth weight (LBW).

- Birth weigh less than 2,500 grams
 - May preterm, SGA or both

How to know

Birth wight

LBW

Not accurate May be helpfiull

Ballard Score

Preterm

The New Ballard Score is a set of procedures developed by Dr. Jeanne L Ballard -To determine Gestational Age through: -Physical assessment of a newborn infant. -Neuromuscular

> https://www.signnow.com/jsfillerdesk15/?projectId=422299065#1bf7300df0c48e529bc58c 2860f8e375

MATURATIONAL ASSESSMENT OF GESTATIONAL AGE (New Ballard Score)

NAME	SEX
HOSPITAL NO.	BIRTH WEIGHT
RACE	LENGTH
DATE/TIME OF BIRTH	HEAD CIRC.
DATE/TIME OF EXAM	EXAMINER
AGE WHEN EXAMINED	
APGAR SCORE: 1 MINUTE	5 MINUTES 10 MINUTES

NEUROMUSCULAR MATURITY

NEUROMUSCULAR		SCORE						
MATURITY SIGN	-1	0	1	2	3	4	5	HERE
POSTURE			000	\$C	\$	0		
SQUARE WINDOW (Wrist)	>90*	P_90*	60*	45°	► ₃₀ .	П 0°		
ARM RECOIL		A .	901 140 - 180°	- O- 110 - 140°		\{}_<90*		
POPLITEAL ANGLE	۱80*	0	0	0-b-	0	on the second	000	
SCARF SIGN	-8-	-8-	-8	-07-	-	→₿		
HEEL TO EAR	Ê	3	È	Go	œÐ	03		

TOTAL NEUROMUSCULAR MATURITY SCORE

PHYSICAL MATURITY

PHYSICAL	SCORE									
MATURITY SIGN	-1	0	1	2	3	4	5	HERE		
SKIN	sticky friable transparent	gelatinous red translucent	smooth pink visible veins	superficial peeling & / or rash, few veins	cracking pale areas rare veins	parchment deep cracking no vessels	leathery cracked wrinkled			
LANUGO	none	sparse	abundant	thinning	bald areas	mostly bald				
PLANTAR SURFACE	heel-toe 40–50 mm: -1 < 40 mm: -2	>50 mm no crease	faint red marks	anterior transverse crease only	creases ant. 2/3	creases over entire sole				
BREAST	imperceptible	barely perceptible	flat areola no bud	stippled areola 1–2 mm bud	raised areola 3–4 mm bud	full areola 5–10 mm bud				
EYE / EAR	lids fused loosely: -1 tightly: -2	lids open pinna flat stays folded	sl. curved pinna; soft; slow recoil	well-curved pinna; soft but ready recoil	formed & firm instant recoil	thick cartillage ear stiff				
GENITALS (Male)	scrotum flat, smooth	scrotum empty faint rugae	testes in upper canal rare rugae	testes descending few rugae	testes down good rugae	testes pendulous deep rugae				
GENITALS (Female)	clitoris prominent & labia flat	prominent clitoris & small labia minora	prominent clitoris & enlarging minora	majora & minora equally prominent	majora large minora small	majora cover clitoris & minora				

SCORE

Neuromusc	ular
Physical	
Total	

MATURITY RATING

SCORE	WEEKS
-10	20
-5	22
0	24
5	26
10	28
15	30
20	32
25	34
30	36
35	38
40	40
45	42
50	44

GESTATIONAL AGE

(weeks)	
By dates	
By ultrasound	
By exam	

Reference

Ballard JL, Khoury JC, Wedig K, et al: New Ballard Score, expanded to include extremely premature infants. J Pediatr 1991; 119:417–423. Reprinted by permission of Dr Ballard and Mosby—Year Book, Inc.

TOTAL PHYSICAL MATURITY SCORE
What are the characteristics of prematurity?

Physical assessment of a newborn infant

Differentiating features

creases are not well formed

Sole- have fine wrinkles, • Breast nodule- small or absent

Identification: Preterm LBW

- EAR- preterm ear cartilages are poorly developed, soft and poor recoil
- Hair- wooly and fuzzy

 Skin-skin is thin, gelatinous, shiny and excessively pink, abundant lanugo

 testes undescended and scrotum poorly developed

 Labia majora widely separated in females

Identification: Preterm LBW

Neurologic Assessment

posture

re window

0.011	NEURO-MUSCULAR MA				ATURITY S	SIGN		
SIGN	-1	0	1	2	3	4	5	SCORE
Square Window		r.	Γ.,	Car.	٢.	N.,	Γ.,	

Arm recoil

	NEU	RO-MUS	CULAR	MATURIT	Y SCOR	E		SIGN
	-1	0	1	2	3	4	5	SCOR E
Arm Recoil		°.	Carro	- J	r Berr	Ŷ.		
				0	1		X	

Neurologic Assessment

Popliteal angle

Scarf sign

Heel to ear

-MUS	SCULAR	MATURI	TY SCOR	E			SIGN	
-1	0	1	2	3	4	5	SCORE	
ŧ	Ì	Êb	Co	ÉD	éro			

Physical Maturity

	-1	0	1	2	3	4		5
Skin	sticky friable transparent	gelatinous red, translucent	smooth pink, visible veins	superficial peeling &/or rash. few veins	cracking pale areas rare veins	parchment deep cracking no vessels	leathery wrii	v cracked nkled
Lanugo	none	sparse	abundant	thinning	bald areas	mostly bald	Ma	turity
Plantar Surface	heel-toe 40-50 mm: -1 < 40 mm: -2	>50mm no crease	faint red marks	anterior transverse crease only	creases ant. 2/3	creases over entire sole	Ra Score -10	weeks 20
Breast	imperceptible	barely perceptible	flat areola no bud	stippled areola 1-2 mm bud	raised areola 3-4mm bud	full areola 5-10 mm bud	-5 0 5	22 24 26
Eye/Ear	lids fused loosely: -1 tightly: -2	lids open pinna flat stays folded	sl. Curved pinna; soft; slow recoil	well-curved pinna; soft but ready recoil	formed & firm instant recoil	thick cartilage ear stiff	10 15 20	28 30 32
Genitals male	scrotum flat, smooth	scrotum empty faint rugae	testes in upper canal rare rugae	testes descend- ing few rugae	testes down good rugae	testes pendulous deep rugae	25 30 35	34 36 38
Genitals female	clitoris promi- nent labia flat	prominent clitoris small labia minora	prominent clitoris enlarg- ing minora	majora & minora equally prominent	majora large minora small	majora cover clitoris & minora	40 45 50	40 42 44

Neuromuscular Maturity

	- 1	0	1	2	3	4	5
Posture		Æ	A		È	Ì	
Square Window (wrist)	>90•	90.	60°	45°	♪ 30°	0°	
Arm Recoil		180°	A 140°-180°	ega 110° - 140°	of Ja 90-110°	×90° >	
Popliteal Angle	6 180°	م ١60°	کے 140°	æ 120°	J.00°	90°	<90°
Scarf Sign	-9-	-8-	-8	-9	-8	-8	
Heel to Ear	Ø,	8	B;	E	Đ,	B,	

MATURATIONAL ASSESSMENT OF GESTATIONAL AGE (New Ballard Score)

NAME	SEX
HOSPITAL NO.	BIRTH WEIGHT
RACE	LENGTH
DATE/TIME OF BIRTH	HEAD CIRC.
DATE/TIME OF EXAM	EXAMINER
AGE WHEN EXAMINED	
APGAR SCORE: 1 MINUTE	5 MINUTES 10 MINUTES

NEUROMUSCULAR MATURITY

NEUROMUSCULAR	SCORE								
MATURITY SIGN	-1	0	1	2	3	4	5	HERE	
POSTURE			000	\$C	\$	0			
SQUARE WINDOW (Wrist)	>90*	P	60.	45°	► ₃₀ .	П 0°			
ARM RECOIL		A .	901 140 - 180°	- O- 110 - 140°		\{}_<90*			
POPLITEAL ANGLE	۱80*	0	0	0-b-	0	on the second	000		
SCARF SIGN	-8-	-8-	-8	-07-	-	→₿			
HEEL TO EAR	Ê	3	È	Go	œÐ	03			

TOTAL NEUROMUSCULAR MATURITY SCORE

PHYSICAL MATURITY

PHYSICAL	SCORE								
MATURITY SIGN	-1	0	1	2	3	4	5	HERE	
SKIN	sticky friable transparent	gelatinous red translucent	smooth pink visible veins	superficial peeling & / or rash, few veins	cracking pale areas rare veins	parchment deep cracking no vessels	leathery cracked wrinkled		
LANUGO	none	sparse	abundant	thinning	bald areas	mostly bald			
PLANTAR SURFACE	heel-toe 40–50 mm: -1 < 40 mm: -2	>50 mm no crease	faint red marks	anterior transverse crease only	creases ant. 2/3	creases over entire sole			
BREAST	imperceptible	barely perceptible	flat areola no bud	stippled areola 1–2 mm bud	raised areola 3–4 mm bud	full areola 5–10 mm bud			
EYE / EAR	lids fused loosely: -1 tightly: -2	lids open pinna flat stays folded	sl. curved pinna; soft; slow recoil	well-curved pinna; soft but ready recoil	formed & firm instant recoil	thick cartilage ear stiff			
GENITALS (Male)	scrotum flat, smooth	scrotum empty faint rugae	testes in upper canal rare rugae	testes descending few rugae	testes down good rugae	testes pendulous deep rugae			
GENITALS (Female)	clitoris prominent & labia flat	prominent clitoris & small labia minora	prominent clitoris & enlarging minora	majora & minora equally prominent	majora large minora small	majora cover clitoris & minora			

SCORE

Neuromusc	ular
Physical	
Total	

MATURITY RATING

SCORE	WEEKS
-10	20
-5	22
0	24
5	26
10	28
15	30
20	32
25	34
30	36
35	38
40	40
45	42
50	44

GESTATIONAL AGE

(weeks)	
By dates	
By ultrasound	
By exam	

Reference

Ballard JL, Khoury JC, Wedig K, et al: New Ballard Score, expanded to include extremely premature infants. J Pediatr 1991; 119:417–423. Reprinted by permission of Dr Ballard and Mosby—Year Book, Inc.

TOTAL PHYSICAL MATURITY SCORE

Example: What are the characteristics of prematurity?

- The following are the most common characteristics of a premature baby. Characteristics may include:
- - small baby, often weighing less than 2,500 grams
- pink or red skin, able to see veins
- little body fat
- - little scalp hair, but may have lots of lanugo
- weak cry and body tone
- - genitals may be small and underdeveloped

How to do Ballard Score

The New Ballard Score
Ballard Mobile Applications Medical ***

Contains ads A You don't have any devices.

Add to wishlist

3+

HOME > IOS > EDUCATIONAL SOFTWARE > HEALTH & FITNESS SOFTWARE > BALLARD SCORE

PUBLISHER'S DESCRIPTION

From Brian Ballard:

Ballard Score is all about automating the Ballard Score Gestational Assessment calculation and providing the information and training needed for the most accurate assessment. The program comes with a FREE version with training, monograph, frequently asked questions and a static score sheet for reference. The in app purchase for just \$0.99 enables the interactive score sheet downloadable videos and high quality pictures.Ballard Score Highlights:Interactive Score Sheet that automatically calculates the weeks gestation based on the cells selected on the touch screen.Detailed Monograph about the Ballard ScoreTraining on each assessment criteria.Frequently Asked Questions with responses from Dr. Ballard

When To Do Ballard. Score

new ballard sore

Best- <12hrs(<26 wks) upto 96 hrs(>26 wks) Accurate within 2 wks of GA Overestimates by 2-4 days in 32-37 wks babies When To Do Ballard

Objectives

- What is preterm baby?
- Definitions (LBW. SGA, LAG. AGA)
- Disease Burden
- characteristics of preterm baby
- Causes of preterm baby
- Prevention
- Complications
- prognosis

What causes prematurity?

1- Maternal factors:

- Previous preterm delivery
- Infection (such as group B streptococcus, urinary tract infections, vaginal infections, infections of the fetal or placental tissues).
 - Abnormal structure of the uterus.
- Cervical incompetence (inability of the cervix to stay closed during pregnancy).
 - Maternal illness
 - Previous preterm birth ?? genetic.
 - Drug abuse (such as cocaine).

2- Factors involving the pregnancy

- Abnormal or decreased function of the placenta.
 - Placenta previa (low lying position of the placenta).
- Placental abruption (early detachment from the uterus).
- Premature rupture of membranes (amniotic sac).
- Polyhydramnios (too much amniotic fluid).

3- Factors involving the fetus

- When fetal behavior indicates the intrauterine environment is not healthy.
- Multiple gestation (twins, triplets or more).

Multiple Birth Ratios Jordan Data: (JPNMS) 2013 report

of Dimes

Jordan case Risk factors Associated significantly with preterm delivery

- Primigravida
- Illness: preeclampsia, and diabetes
- Mother's weight <50 kg
- lack of antenatal care visits or <8 visits during pregnancy
- Previous history of preterm delivery,
- Previous history of stillbirth/neonatal death
- Male sex

The incidence, risk factors, and mortality of preterm
neonates: A prospective study from Jordan (2012-2013

Preterm yenidoğan insidansı, risk faktörleri ve mortalitesi: Ürdün'den prospektif bir çalışma (2012-2013)

of Jordan Faculty of Nursing, Department of Maternal and Child Health Nu ice and Technology, Faculty of Applied Medical Sciences, Department of Community Medicine

- Turk J Obstet Gynecol. 2017 Mar;14(1):28-36. doi: 10.4274/tjod.62582. Epub 2017 Mar 15.
- The incidence, risk factors, and mortality of preterm neonates: A prospective study from Jordan (2012-2013).
- Abdel Razeg NM¹, Khader YS², Batieha AM²

Prevention Bundles

- 1- Prevention of preterm Birth
- 2- Management of preterm labor
- 3- Care of preterm baby

PREVENTION OF PRETERM BIRTH

- Preconception care package, including family planning (e.g., birth spacing and adolescentfriendly services), education and nutrition especially for girls, and STI prevention
- Antenatal care packages for all women, including screening for and management of STIs. high blood pressure and diabetes; behavior change for lifestyle risks; and targeted care of women at increased risk of preterm birth
- Provider education to promote appropriate induction and cesarean
- Policy support including smoking cessation and employment safeguards of pregnant women

REDUCTION OF PRETERM BIRTH

CARE OF THE PREMATURE BABY

MANAGEMENT

OF PRETERM

LABOR

slow down labor

corticosteroids

Antibiotics for

Tocolytics to

Antenatal

pPROM

- Essential and extra newborn care. especially feeding support
- Neonatal resuscitation
- Kangaroo Mother Care
- Chlorhexidine cord care
- Management of premature babies with complications, especially respiratory distress syndrome and infection
- Comprehensive neonatal intensive care, where capacity allows

MORTALITY REDUCTION AMONG BABIES BORN PRETERM

Born Too Soon:

PREVENTION OF PRETERM BIRTH

- Preconception care package, including family planning (e.g., birth spacing and adolescentfriendly services), education and nutrition especially for girls, and STI prevention
- Antenatal care packages for all women, including screening for and management of STIs, high blood pressure and diabetes; behavior change for lifestyle risks; and targeted care of women at increased risk of preterm birth
- Toco slow
- Ante corti
- Antik pPR(
- Provider education to promote appropriate induction and cesarean
 Policy support including smoking
 - Policy support including smoking cessation and employment safeguards of pregnant women

REDUCTION OF PRETERM BIRTH

Prevention Bundles

- **1- Prevention of preterm Birth**
- 2- Management of preterm labor
- 3- Care of preterm baby

1. Antenatal care.

Antenatal visits to detect mother at risk of preterm labor and mange her disease :

Reference:

Neonatal outcomes in extremely preterm newborns admitted to intensive care after no active ant natal management: a population-based co- hort study. J Pediatr. 2018 Dec;203:150–5.

2 :Cervical length measurements in populations **at risk of preterm birth** (example :previous preterm)

- Reference:
 - Interventions for women with mid-trimester short cervix: which ones work? [editorial]. Ultrasound Ob- stet

Gynecol. 2017 Mar;49(3):295–300.

 Vaginal progesterone, oral progesterone, 17- OHPC, cerclage, and pessary for preventing preterm birth in at-risk singleton pregnan- cies: an updated systematic review and net- work meta-analysis. BJOG. 2019 Apr;126(5): 556-567.

3. Progesterone (different types)

Use of progesterone is associated with:

- May reduced preterm delivery rates and reduced neonatal mortality

Indication

- Give if
 - In singleton gestations
 - With previous preterm birth

And

• shortened cervix has been identified

In these **women with prior PTB**, if the transvaginal ultrasound Cervical length (CL) shortens to <25 mm at <24 weeks, cervical cerclage may be offered.

References:

- Interventions for women with mid-trimester short cervix: which ones work? [editorial]. Ultrasound Ob- stet Gynecol. 2017.
- Vaginal progesterone, oral progesterone, 17- OHPC, cerclage, and pessary for preventing preterm birth in at-risk singleton pregnan- cies: an updated systematic review and net- work meta-analysis. BJOG. 2019 Apr;126(5): 556-567.

3. Use of progesterone

2016 Meta-Analysis including data from OPPTIMUM study

blished online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.15953

Vaginal progesterone decreases preterm birth ≤ 34 weeks of gestation in women with a singleton pregnancy and a short cervix: an updated meta-analysis including data from the OPPTIMUM study

L. RC

Meta-analysis

Conclusion This updated systematic review and metaanalysis reaffirms that vaginal progesterone reduces the risk of preterm birth and neonatal morbidity and mortality in women with a singleton gestation and a mid-trimester $CL \leq 25 \text{ mm}$, without any deleterious effects on neurodevelopmental outcome. Clinicians should continue to perform universal transvaginal CL screening at 18-24 weeks of gestation in women with a singleton gestation and to offer vaginal progesterone to those with a $CL \leq 25 \text{ mm}$. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

2018 Meta-analysis

Progesterone for prevention of PTL

5 studies combined – Favors progesterone

Prevention Bundles

- 1- Prevention of preterm Birth
- 2- Management of preterm labor
- 3- Care of preterm baby

- 4. in utero Transfer of mother at risk of PTL
 - The Extremely preterm baby (< 29-30 weeks) should, if possible, be transported in utero to tertiary NICU

5. Antibiotics for **Preterm prolonged rupture of membrane (pPROM)**

- antibiotics
 - can delay preterm delivery
 - reduce neonatal morbidity,
- Avoid co-amoxiclav because of its association with increased risk of NEC

Antibiotics in preterm rupture of membranes (pPROM)

Antibiotics treatment neip to improve the infant birth weight

Potential for lives saved through antibiotics for premature prelabor rupture of the membranes (pPROM)

- In high-income countries, it is standard practice to give antibiotics to women with pre-term, pre-labour rupture of membranes (pPROM) to delay birth and reduce the risk of infection.
- In LMICs use of antibiotic therapy for pPROM is not common
- Reviewed 18 RCTs (most from HIC) that provide strong evidence that antibiotics for pPROM:
 - Reduced risk of RDS [risk ratio (RR) = 0.88; confidence interval (CI) 0.80, 0.97],
 - Reduced risk of early onset postnatal infection (RR = 0.61; CI 0.48, 0.77).
 - Reduction in neonatal mortality (RR = 0.90; CI 0.72, 1.12).
- In LMICs where access to other interventions (antenatal steroids, surfactant therapy, ventilation, antibiotic therapy) may be low, antibiotics for pPROM could prevent 4% of neonatal deaths due to complications of prematurity and 8% of those due to infection.

Could save about 12% of PT babies each year if reached 95% of women in preterm labor (LiST analysis)

Cousens S, et al. Antibiotics for preterm pre-labor rupture of membranes. International Journal of Epidemiology 2010;39:1134–1143.

5. Neuroprotection

Magnesium Sulphate (MgSO4)

Is given to women with imminent preterm delivery before
 32 weeks

It reduces cerebral palsy at 2 years of age by about 30%

Magnesium sulphate for wom- en at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009 Jan;1(1):CD004661.

The longer-term benefits are less clear.

Australasian Collaborative Trial of Magnesium Sulphate (ACTOMgSO4) Study Group. School-age outcomes of very preterm infants after antenatal treatment with magnesium sulfate vs placebo. JAMA. 2014 Sep;312(11):1105–1

http://www.mfmsm.com/media_pages/MFM_Progesteron e_and_preterm_birth_prevention.pdf

6. Antenatal steroid

a **single course** of prenatal corticosteroids **to all** women at risk of preterm delivery from when pregnancy is considered potentially viable (24 weeks) until 34 weeks' gestation ideally at least 24 h before birth (level of evidence is **A1**).

Prevention of preterm Birth: (prenatal care) cont.... Pharmaceutical care

- Antenatal steroid therapy(RCOG)
- Reduce RDS(44%), IVH(46%), NEC and
- neonatal death(31%)

• <u>MOA</u>

- In response to glucocorticoid, the fetal lung fibroblast produces protein, fibroblast-pneumonocyte factor, which in turn stimulat the formation of saturated phosphatidylcholine
- At what GA?- single course between 24-34 wks of GA
- Most effective?-24 hours after and upto 7 days after 2nd dose of corticosteroid

- Role of magnesium sulphate
- Commonly used tocolytic
- Reduced rate of cerebral palsy and gross motor dysfunction
- initial infusion of 4 to 6 grams over 15 to 30 minutes, and then a maintenance dose of 2 to 3 grams per hour.
- · Contraindicated in mothers with myasthenia gravis

7. Tocolysis

- Consider short-term use of tocolytic drugs in very preterm pregnancies
- The aim of tocolysis must be to prolong the pregnancy by at least 48 hours to allow completion of a course of corticosteroids and/or in utero transfer to a perinatal center.

Use Safe tocolytic drugs for the mother (oxytocin antagonists or Ca-channel blockers)

Bed rest

- What is known evidence:
 - There is currently no data
 - It increase the maternal risk of thrombosis and contributes to the development of muscular atrophy and osteoporosis.

 Elliott J P, Miller H S, Coleman S. A randomized multicenter study to determine the efficacy of activity restriction for preterm labor management in patients testing negative for fetal fibronectin. J Perinatol. 2005;25:626–630. [PubMed] [Google Scholar]
 Bigelow C A, Factor S H, Miller M. Pilot Randomized Controlled Trial to Evaluate the Impact of Bed Rest on Maternal and Fetal Outcomes in Women with Preterm Premature Rupture of the Membranes. Am J Perinatol. 2016;33:356–363. [PubMed] [Google Scholar]
 da Silva Lopes K, Takemoto Y, Ota E. Bed rest with and without hospitalisation in multiple pregnancy for improving perinatal outcomes. Cochrane Database Syst Rev. 2017;(03):CD012031. [PMC free article][PubMed] [Google Scholar]

Prevention Bundles

- 1- Prevention of preterm Birth
- 2-prevention of preterm Birth

3- Care of preterm baby Allow safe transition

Prevention Bundles

- 1- Prevention of preterm Birth
- 2- Management of preterm labor
- 3- Care of preterm baby
Care of Preterm Baby Part 2

Eman Badran Professor of Pediatrics Fifth year medical students 2020-2021

PREVENTION OF PRETERM BIRTH

- Preconception care package, including family planning (e.g., birth spacing and adolescentfriendly services), education and nutrition especially for girls, and STI prevention
- Antenatal care packages for all women, including screening for and management of STIs, high blood pressure and diabetes; behavior change for lifestyle risks; and targeted care of women at increased risk of preterm birth
- Provider education to promote appropriate induction and cesarean
- Policy support including smoking cessation and employment safeguards of pregnant women

REDUCTION OF

PRETERM BIRTH

CARE OF THE PREMATURE BABY

MANAGEMENT

OF PRETERM

LABOR

slow down labor

cort costeroids

Antibiotics for

Tocolytics to

Antenatal

pPROM

- Essential and extra newborn care, especially feeding support
- Neonatal resuscitation
- Kangaroo Mother Care
- Chlorhexidine cord care
- Management of

premature babies with complications, especially respiratory distress syndrome and infection

 Comprehensive neonatal intensive care, where capacity allows

MORTALITY REDUCTION AMONG BABIES BORN PRETERM

Born Too Soon:

Care of preterm baby

1-Delivery room Management

Delivery room Management

- 1-Prpration before delivery
 - -Team
 - Role

Environment

Temperature Management

1-Delivery room temperature
Keep rooms with temperature set at

24 to 26 °C

Temperature Management

Delivery room management for preterm

2-Pre heated warmer

www.alamy.com - CPMYDX

Temperature Management

DELIVERY ROOM MANAGEMENT

Resuscitation-

Thermoregulation-a

Plastic bags or occlusive wrapping under radiant warmers should be used during stabilization in the delivery suite for babies <28 weeks' gestation to reduce the risk of hypothermia

Wrap

Bag

Keep baby warm

Thermal care if < 28 weeks

Delivery room management: Thermal Bundle

VIEW AND PRINCIPLES OF RESUSCITATION

3-

ESSON

Keeping Premature Babies Warm

- Increase delivery room temperature
- Preheat radiant warmer
- Use warming pad
- Consider polyethylene bag for babies · < 28 weeks' gestation

Click on the image to play video

Delay cord clamping (DCC)

Clamping the cord After Initiation of respiration

Delivery room Management

Delay cord clamping. DCC

- Clamping the cord After Initiation of respiration
 - If before respiration will be bad.
 - It results in an acute transient reduction in left atrial filling leading to an abrupt drop in left ventricular output.
- Avoid Cord milking (DO IT ONLY IN RESEARCH)
 - cause Severe intraventricular hemorrhage in preterm)
 - ?Suspected as source of stem cell)research)

REDUCE nmr by 30%

Very preterm infants <30 weeks

Delaying cord clamping by 20-45 seconds

2-3-fold reduction in intraventricular hemorrhage

Reduced need for blood transfusions

Greater mean blood pressures in the first hours of life

No difference in Apgar scores at 5 minutes/body temperature

Just short of statistical significance for halving of mortality with DCC

in these infants

Delivery room Management

- Temperature Management
- Delay cord clamping
- Respiratory support

Respiratory support In delivery room : -Use CPAP (6cm of water) By MasK or short nasal prong Indication: If baby in respiratory distress (RD) but breathing spontaneously and heart rate > 100

Respiratory support In delivery room :

What % of Oxygen to use ie what is FiO2

• Use blended oxygen

- For Term
 - start with 21% oxygen For preterm
- Preterm
 - start with 30% oxygen

Blender

Use T peace resuscitator

Indication:

Download from

Dreamstime.com

I- Positive pressure ventilation or CPAP

2-has control the inspiratory pressure (PIP) and CPAP

T piece resuscitator

Blender

Emonin. OOG

Use Pulse oximetry and use right side

D Valentyna L

Neonatal Resusci Quick Tangential Po • Pulse oximetry – Attached to preductal location on right upp – Saturation may normally remain low for se delivery		citation Point pper extremity several minur ofter r
Targeted Pro After 1 min 2 min	eductal Spo ₂ Birth 60%-65% 65%-70%	Image: Sector
3 min 4 min 5 min 10 min	70%-75% 75%-80% 80%-85% 85%-95%	 One study showed Combination of bradycardia (<100/min) and lower SpO2 (<80%) at 5 min is associated with death or intracranial haemorrhage in pretrm
Saturation protocol		Arch Dis Child Fetal Neonatal Ed. 2018 Sep; 103(5):F446–54.

1 and

How do you determine heart rate in the delivery room?

Care of preterm baby

1-Delivery. Room management
2- Transfer Management From Delivery room to NICU Transport of the preterm from Delivery room

Preheated incubator
 Stabilize the baby
 Use Delivery room as ICU concept to stabilize

Care of preterm baby

Allow safe transition

Care of preterm baby

- 1. Delivery. Room management
- 2. Transfer Management From Delivery room to NICU

3. Neonatal Management In Neonatal intensive care Unit

In Neonatal Intensive Care Unit (NICU) Management. Stages.

Neonatal Intensive Care Unit (NICU) Management.

Unstable stage Birth 3 to 5 days

1- Thermal control

Unstable stage Birth 3 to 5 days

– 1- prevent Hypothermia

Why

Premature Susceptibility to Heat Loss

Causes of Hypothermia Are:

- High surface area to volume ratio. (SA: V)
- Thin non-keratinized skin
- Lack of insulating subQ fat
- Lack of thermogenic brown adipose tissue
- Inability to shiver
- Poor vasomotor response
- Poor central thermal control

Adverse Consequences of Hypothermia Definition of Hypothermia :Temp <36.5 C^o • High O2 consumption → hypoxia, bradycardia

- High glucose usage → hypoglycemia / decreased glycogen stores
- High energy expenditure → reduced growth rate, lethargy, hypotonia, poor suck/cry
- Decease surfactant production \rightarrow RDS
- Vasoconstriction → poor perfusion → metabolic acidosis
- Delayed transition from fetal to newborn circulation
- Thermal shock \rightarrow DIC \rightarrow death

Neonatal Intensive Care Unit (NICU) Management.

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management
 - -Resp Support
 - Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

Why they need the respiratory support?

Complications of prematurity RESPIRATORY DISTRESS

- Due to Immature surfactant
- Due to Immature lung :
 - Alveolation and vascularization of the Lungs
- Due to Immature musculature and in sufficient calcification of bony matrix

Due to Immature lung : Alveolation and vascularization of the Lungs

Immature surfactant

Types of Respiratory problems

1- Respiratory distress syndrome

Hyaline membrane disease = respiratory distress syndrome.

a condition in which the air sacs cannot stay open due to lack of surfactant in the lungs.

Histology

Normal

RDS

Gestational age and RDS

RDS: Reduction in compliance

Role of antenatal steroids

Resp support: Be aware of complication of Respiratory distress syndrome

Air leaks

Air leaking out of the lung spaces into other tissues

Pulmonary interstitial emphysema

Respiratory Management

- Support ventilation
 None invasive and invasive
- Surfactant
 - ≻When to give
 - FiO2 requirement > 30% all babies with a clinical diagnosis of RDS, especially in the early phase of worsening disease.
- LISA METHOD for surfactant administration
 - https://www.youtube.com/watch?v=nnPSYvXQ_-I

Respiratory Distress in Newborn

Respiratory management of RDS 1- **SURFACTANT**

2- Respiratory support:

- invasive CONVENTIONAL
(MECHANICAL VENTILATION, HFO,)
- None invasive (CPAP, NPPV, High flow NASAL CANNULA)

UNG COMPLICATIONS Respiratory distress syndrome

Alveoli with surfactant

Normal alveoli

Collapsed alveoli

SOURCE: UNIVERSITY OF HAW

Resp. Support : continue...

Oxygen Saturation and Outcomes in Preterm Infants

ally appropriate range for oxygen saturation in preterm infants is unknown tudies have shown that infants had reduced rates of retinopathy of pre when lower targets of oxygen saturation were used. inically app

onal randomized o strolled trials, we evaluated the effects In three international randomized, controlled trials, we evaluated the effects of tragging an oxygen surration of 8% to 80%, as compared with a range of 91 to the straight of the straight of the trials of the trainer of the straight of 10 to 10

total of 2448 infants were recruited. Among the 1187 infants whose tr imeter-calibration algorithm, the rate of death was higher in the lower-target group than in the higher-target group (23.1%) relative risk in the lower-target group, 1.45; 95% confidence interval [C 1.84; P=0.002). There was heterogeneity for mortality between the orig rithm and the revised algorithm [P=0.006) but not for other outcomes.] wer-target group for oxygen saturation has arity (10.6% vs. 13.5%; relative risk, 0.79 eased rate of pectotizing ent risk, 1.31: 95% CI, 1.02 to 1.68: P=0.04). There were no significant b roup differences in rates of other outcomes or adverse event

rgeting an oxygen saturation below 90% with the use of current oximeter remely preterm infants was associated with an increased risk of death. (Fu by the Australian National Health and Medical Research Council and oth BOOST II Current Controlled Trials number, ISRCTN00842661, and Australian New Zealand Clinical Trials Registry numbers, ACTRN12605000055606 and ACTEN126050002536051

N ENGLI MED 15822 NEW ORG MAY 10, 201 The New England Journal of Medicine ember 20, 2017. For personal use only. No other use

Answer keep 91% -95% < 32 weeks

Monitor O2 Saturation

Oxygen should be warmed and humidified AND MONITERED

Resp. Support Be Aware of PULMONARY COMPLICATION

2- PULMONARY HEMOHRAGE

Bleeding into the lungs

Rare

- Increases the need for ventilatory support
- Occurs mainly 2-4 days after birth
- Predisposing factors include mechanical ventilation, immaturity and PDA

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

3- Cardiac Support.

• Anticipate cardiac Complications

3-cardiovascular:

a. Patent ductus arteriosus (PDA)

b. Hypotension (due to cardiac dysfunction , hypovolemia or sepsis)

Maintain BP (MEAN BLOOD PRESSURE = GA first few days

Patent Ductus Arteriosus (PDA)

- Premature infants at risk AT 24-48 hours
 - Duct does not respond to "close" signals (O2+PGs)
- Leads to symptoms of congestive heart failure
- Echo will confirm
- Treated by fluid restriction, NSIAD, Paracetamol, interventional catheter closure (rare surgical ligation)

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

- 3- Cardiac Support. (Anticipate PDA and Hypotension)
- 4- Metabolic Support

Complications of prematurity?

- 4 Metabolic problems
- •fluid loss through skin
 - (thin skin, no Keratin, Rapid Respiratory rate, from warmer and large Surface area)
- Have immature kidney
 - that cannot concentrate or regulate electrolytes and the buffer well)
- Na Imbalance
- Ca Imbalance
- K imbalance
- Glucose imbalance (Risk of hypo and hyperglycemia)

Unstable stage Birth 3 to 5 days

1- Thermal control

2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

- 3- Cardiac Support. (Anticipate PDA and Hypotension)
- 4- Metabolic Support
- 5- Skin care

Complications of prematurity? 5-Skin care Has: Fragile, thin transparent skin

MANAGEMENT DURING 72 HOURS

- NO TAPES ON SKIN
- Use hydro gel tapes

NASAL INJURY

Source: NAINR @ 2014 Elsevier Science, Inc

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

- 3- Cardiac Support. (Anticipate PDA and Hypotension)
- 4- Metabolic Support
- 5- Skin care
- **6- INFECTIONN**

Complications of prematurity? 6- INFECTION

• Risk of infection

Decrease IGs Complement, T cell and B cell dysfunction

Follow infection control regulations

7-Nutrition problems

Nutritional support

- NUTRITION FOR METABOLICALLY STABLE INFANT
- A) parenteral nutrition- on admission
- aminoacids start at 3-3.5g/kg/d increase by 0.5g/kg/d ---max 3.5-4g/kg/d
- intravenous lipids(20%)- start by 24 hrs-0.5-1g/kg/d increase by 0.5g/kg/d upto 3g/kg/d Monitor TG levels - <200mg/dl

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

- 3- Cardiac Support. (Anticipate PDA and Hypotension)
- 4- Metabolic Support
- 5- Skin care
- 6- INFECTIONN
- 7- Nutritional management

Nutritional Support

Start 10 -20 ml/kg/day Best is breast milk

Early enteral nutrition

Trophic feeding/ Gut priming

Practice of feeding very small amounts of enteral nourishment

to stimulate development of the immature GIT

Advantages:

- Improves GI motility
- Enhances enzyme maturation
- Improves mineral absorption
- Lowers incidence of cholestasis
- Shortens time to regain birth weight

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

- 3- Cardiac Support. (Anticipate PDA and Hypotension)
- 4- Metabolic Support
- 5- Skin care
- 6- INFECTIONN
- 7- Nutritional management
- 8- Gastrointestinal Problems

9- Gastro intestinal problems

Feeding problems

- Difficulty in self feeding
- In coordination of sucking and swallowing
- Abdominal distension
- Regurgitation and aspiration

>UNABLE TO COORDINATE SUCK AND SWALLOW BEFORE 34 WEEKS GESTATION.

Unstable stage Birth 3 to 5 days

- 1- Thermal control
- 2- Respiratory system management

-Resp Support and Be aware of Resp Complication (air leak and Pulmonary Hemorrhage

- 3- Cardiac Support. (Anticipate PDA and Hypotension)
- 4- Metabolic Support
- 5- Skin care
- 6- INFECTIONN
- 7- Nutritional management
- 8- Gastrointestinal Problems

9- communication with parents

7-Communication With parents

Preterm & Low-birth-weight Infants

- Parents & Preterm Neonates
 - Physically less attractive babies
 - Cries are high pitched and grating
 - More irritable, passive, and less social
 - Mothers may feel alienated, harbor guilt, and sense of failure and low self-esteem
 - Fear of hurting may discourage handling
 - Preterms fare better with responsive caring parents

7-Communication With parents

- Care of premature babies needs include:
 - monitoring of temperature, and
 Vital signs
 - blood pressure, heart and breathing rates, and oxygen levels
 - Input Out put

pressure monitor -Need respiratory support

- giving extra oxygen by a CPAP, nasal cannula, or mechanical ventilators
- intravenous (IV) fluids and parenteral nutrition -

Care of preterm

Family support

SUPPORT

- The family dynamics are greatly disturbed.
- The problems and issues should be handled with equanimity, compassion, concern and caring attitude of the health team.
- Encouraged to touch and talk with her baby.
- Provide kangaroo-mothercare.
- Emotional support and guidance.

Complications of prematurity?

In Neonatal Intensive Care Unit NICU

✓ Unstable stage Birth 3 to 5 days

✓THE STABLE STAGE > 3-5 days

✓THE STABLE STAGE >3-5 days

- APNEA OF PREMATURITY
- GI problems
- VESSEL ACCESS
- Infection
- NEC
- Neurologic

Defined as:

- the cessation of breathing for > 20 seconds (apnea)

or

- cessation of breathing for less than 20 seconds if it is accompanied by bradycardia or oxygen (O_2) desaturation.

PEDIATRICS Vol. 111 No. 4 April 2000

Cause of Apnea of prematurity

✓THE STABLE STAGE >3-5 days

- APNEA OF PREMATURITY
- GI problems
- VESSEL ACCESS
- Infection
- NEC
- Neurologic

GI problems

Neurologic complications :

- intrventricular hemorrhage IVH -.

✓THE STABLE STAGE >3-5 days

- APNEA OF PREMATURITY
- GI problems
- VESSEL ACCESS
- Infection
- NEC
- Neurologic

Vascular Acees

Umbilical cord catheterization

Vascular Acees

Perepheral inserted central catheters catheterization

PICC Lines

- Infections
 - premature infants are more susceptible to infection and may require antibiotics

Invasion of barrier

Neurologic

INTRAVENTRICULAR HEMORRHAGE

© Absurt/oddHealth.ca

BY, Ms. Sheen. S. P. Belsylin M.Sc Nursing 1st year

Complications of prematurity?

In Neonatal Intensive Care Unit NICU

✓ Unstable stage Birth 3 to 5 days

✓THE STABLE STAGE >3-5 days

- Retinopathy of prematurity (ROP)
- Infection
- Chronic lung disease
- Metabolic Bone disease
- Neurologic
 - Post hemorrhagic hydrocephalys
 - Periventricular Leukomalacia (PVL)
- Anemia of prematurity

Retinopathy of prematurity (ROP) Pathogenesis and clinical features

- Incomplete retinal vascularisation.
- Vessels migrate from disc to periphery weeks.
- Mature vessels extend to nasal ora at 36 weeks.
- Vessels extend to temporal ora at 39-41 weeks.
- Related to gestational age (GA) and birth weight (bw).

Classification of ROP

- International Classification of Retinopathy of Prematurity (ICROP)
- Describe ROP according to Zone, Extent and Stage.

Classification of ROP cont.

• Staging:

5 stages - describe abnormal vascular response. Most severe stage is used to determine the stage of the eye as whole.

Classification of ROP cont.

- Stage 3: Extaretinal Fibrovascular Proliferation
- Stage 4: Partial Retinal Detachment
- Stage 5: Total Retinal Detachment

Classification of ROP cont.

• Plus disease –

signs indicating severity. Venous dilatation or arteriolar tortuosity

- Retinopathy of prematurity (ROP)
- Infection
- Chronic lung disease
- Metabolic Bone disease
- Neurologic
 - Post hemorrhagic hydrocephalys
 - Periventricular Leukomalacia (PVL)
- Anemia of prematurity

- Infections
 - premature infants are more susceptible to infection and may require antibiotics

Invasion of barrier

- Retinopathy of prematurity (ROP)
- Infection
- Chronic lung disease CLD or BPD
- Metabolic Bone disease
- Neurologic
 - Post hemorrhagic hydrocephalys
 - Periventricular Leukomalacia (PVL)
- Anemia of prematurity

What happen in Broncho pulmonary dysplasia (BPD) = (chronic lung disease (CLD)?

- Retinopathy of prematurity (ROP)
- Infection
- Chronic lung disease CLD=BPD
- Metabolic Bone disease Of preterm
- Neurologic
 - Post hemorrhagic hydrocephalys
 - Periventricular Leukomalacia (PVL)
- Anemia of prematurity

Metabolic bone disease of preterm (MBDP)

• DEFINITION

- Is a **M**etabolic **B**one **D**isease of **P**retem infants
- in which decreased bone mineral content occurs mainly as a result of lack of adequate Ca & P
- From
 - decrease intake in extra uterine life
 - in sufficient in utero supply (mainly last trimester and last trimester .
- Screen. (If < 30 wks if < 1.5kg) at 4 weeks then weekly (mainly if <1kg,<28 wk and TPN > 2 wks)
 - Dx
 - Low P <4mg/dl IU/L. (< 1.25 mmol/l)
 - High Alk P > 600
 - PTH. > 7 pmol/L
 - Bone on Xrray (osteopenia, Fraying, Fracture)

Metabolic bone disease of preterm (MBDP)

- Biomarker to screen
 - Corrected CA
 - Inorganic phosphate
 - Alkp
 - PTH
 - 25 (OH) vitamin D
- Pediodic Xrya
- Dexa /Us ???

Metabolic bone disease of preterm (MBDP)

- Mangment
 - Fortification of BREAst milk
 - Vitamin D
 - D/C medication
 - (steroid, caffien, frusimide.PPI
 - Physical therapy
 - Safe handling
 - /PARENT EDUCATION of safe handlinh

Complication (MBDP) or osteopenia of premterm (OOP)

- Fractures
- Chronic lung. Disease
- higher mortality (14.1 vs 4.4%) and longer hospital stay (140.2 ± 51 vs 101.0 ± 42 days; P < .01).
 - Reference : EN J Parenter Enteral Nutr. 2014 Nov;38(8):982-90. doi: 10.1177/0148607113499590.Epub 2013 Aug 20.

MBDP

- Retinopathy of prematurity (ROP)
- Infection
- Chronic lung disease CLD=BPD
- Metabolic Bone disease Of preterm (MBDP)
- Neurologic
 - Post hemorrhagic hydrocephalus
 - Periventricular Leukomalacia (PVL)
- Anemia of prematurity

Neurologic complications :

 periventricular leukomalacia - softening of tissues of the brain around the ventricles

- Retinopathy of prematurity (ROP)
- Infection
- Chronic lung disease CLD=BPD
- Metabolic Bone disease Of preterm (MBDP)
- Neurologic
 - Post hemorrhagic hydrocephalus
 - Periventricular Leukomalacia (PVL)
- Anemia of prematurity

Anemia of Prematurity

Why does it happen ?

Blood loss

Shortened RBC lifespan
Preterm 40-60 days

Inadequate RBC production

- Suboptimal erythropoiesis in response to hypoxia
- Switch from hepatic to renal O₂ sensor not till term

When can a premature baby go home from the hospital

When can a premature baby go home from the hospital?

- serious illnesses are resolved
- stable temperature able to stay warm in an open crib
- taking all feedings by breast or bottle
- no recent **apnea** or low heart rate
- parents are able to provide care including medications and feedings
- > 35 weeks and > 1.8-2 kg

What to do before

• Before discharge

Sceening before discharge

Screening

- Congenital anomalies Internal and external; SpO2 screening for CHD (>10% difference suggestive)
- 2. Hearing screening prior to discharge in all newborn (AAP)
- Risk factors- F/h/o SNHL, In utero infections, NNH requiring Exchange transfusion, Ototoxic medication>5d/+loop diuretics, Mech ventilation>10d
- OAE- Simpler, Middle & inner ear assessed, all ages.
- ABR- Can diagnose auditory neuropathy(dyssynchrony), recommended for high-risk infants admitted in NICU, within 1st 3mo.
- Visual impairment: ROP screening using indirect ophthalmoscopy at PN age of 3wks in high risk infants: Severe RDS, Hypotension req vasopressors, Surgery in 1st several wks
 - 4- Metabolic screen and repeat. Thyroid function and 6-8 weeks

- Hearing follow up- hearing loss in 2% to 11% of VLBW infants-both sensorineural and conductive hearing loss
- BERA/OAE before discharge

Screening – neonatal period and 1 yr

 Auditory dys-synchrony(auditory neuropathy) and central auditory processing problems

What to Teach Parents before discharge
long-term sequala

- SIDS
- Cosmetic
- Sleep cycle
- Bonding
- BPD
- ROP
- Neurologic
- Growth
- Hearing

Teach Parents before discharge

• CPR

WHICH INFANTS ARE AT GREATEST RISK for SIDS?

- Increase risk with
- The lower the gestational
- The lower the birthweight
- A combination of these increases the risk by more than each factor alone

For Baby < 28 weeks in RSV season

FOLLOW UP CARE

 Respiratory syncytial virus – most important cause of respiratory infection in premature infants

Good hand hygiene, avoid passive cigarette smoking exposure

FIGURE 6 | Antibody-dependent enhancement (ADE) of infection. ADE of infection has been shown *in vitro* for multiple viruses, including RSV. High antibody titers neutralize the virus completely. Sub-neutralizing antibody titers form immune complexes that can interact with both the virus receptor and Fc gamma receptors, leading to enhanced infection levels compared to infection in the absence of antibodies.

frontiers in Immunology

REVIEW published: 22 March 2019 doi: 10.3389/fimmu.2019.00548

https://europepmc.org/backend/ ptpmcrender.fcgi?accid=PMC6 438959&blobtype=pdf

Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease

Elisabeth A. van Erp^{1,2,3}, Willem Luytjes¹, Gerben Ferwerda^{2,3} and Puck B. van Kasteren^{1*}

¹ Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bithoven, Netherlands, ³ Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Padboud Institute for Molecular Life Sciences, Nijmegen, Netherlands, ³ Padboud Center for Infectious Diseases, Nijmegen, Netherlands Later follow up Screen for Neurodevelopment Delay

Early Preterm (EPT) Infants Experience Multiple Delays

Compared with full-term infants, EPT are more likely to have :

Delays in fine and gross motor functioning

Delays in sensory integration

Delays in cognitive functioning

Delays in communication

▶ Behavioral and socio-emotional problems

(Kerstjens, et al., 2011 citations: Stephens & Vohr, 2009; Saigal & Doyle, 2008; Taylor, Klein, & Hack, 2000; Marlow, 2004; Hokken-Koelega, 2017)

Outcome	Epoch 1 (2000–2003)		Epoch 2 (2004–2007)		Epoch 3 (2008–2011)		P Value†
	no./total no.	% (95% CI)*	no./total no.	% (95% CI)*	no./total no.	% (95% CI)*	
All infants‡							
Survival without neurodevelopmental impairment	217/1391	16 (14–18)	250/1535	16 (15–18)	276/1348	20 (18–23)	0.001
Survival with neurodevelopmental impairment	207/1391	15 (13–17)	209/1535	14 (12–15)	211/1348	16 (14–18)	0.29
Death	967/1391	70 (67–72)	1076/1535	70 (68–72)	861/1348	64 (61–66)	<0.001
Survival without neurosensory impairment	340/1380	25 (22–27)	391/1533	26 (23–28)	395/1348	29 (27–32)	0.01
Survival with neurosensory impairment	73/1380	5 (4–7)	66/1533	4 (3–5)	92/1348	7 (6–8)	0.01
Infants born at 22 wk							
Survival without neurodevelopmental impairment $\$	2/241	1 (0-3)	4/274	1 (1-4)	3/234	1 (0-4)	0.80
Survival with neurodevelopmental impairment§	4/241	2 (1-4)	9/274	3 (2-6)	5/234	2 (1-5)	0.46
Death	235/241	98 (95–99)	261/274	95 (92–97)	226/234	97 (93–98)	0.39
Infants born at 23 wk							
Survival without neurodevelopmental impairment	34/496	7 (5–9)	55/489	11 (9–14)	59/450	13 (10–17)	0.005
Survival with neurodevelopmental impairment	63/496	13 (10–16)	41/489	8 (6–11)	51/450	11 (9–15)	0.08
Death	399/496	80 (77–84)	393/489	80 (77–84)	340/450	76 (71–79)	0.11
Infants born at 24 wk							
Survival without neurodevelopmental impairment	181/654	28 (24–31)	191/772	25 (22–28)	214/664	32 (29–36)	0.007
Survival with neurodevelopmental impairment	140/654	21 (18–25)	159/772	21 (18–24)	155/664	23 (20–27)	0.44
Death	333/654	51 (47–55)	422/772	55 (51-58)	295/664	44 (41-48)	<0.001

† P values were determined using chi-square tests.
‡ Included are 4274 infants who had data available on the primary outcome.
§ Among the 27 surviving infants born at 22 weeks, the median (interquartile range) gestational age was 22 weeks 5 days (22 weeks 4 days to 22 weeks 6 days) and birth weight was 570 g (510 to 620).

z

Dental problems

Enamel hypoplasia

<u>RECOMMENDATIONS:</u> For

 Medically stable preterm infants who remain in the hospital at 2 months of chronologic age should receive all inactivated vaccines recommended at that age.

[A medically stable infant is defined as one who does not require ongoing management for serious infection; metabolic disease; or acute renal, cardiovascular, neurologic, or respiratory tract illness and who demonstrates a clinical course of sustained recovery and a pattern of steady growth.]

 All immunizations required at 2 months of age can be administered simultaneously to preterm or low birth weight infants, except for oral rotavirus vaccine, which should be deferred until the infant is being discharged from the hospital to prevent the potential health care-associated spread of this live vaccine virus.

born preterm worldwide

14.9 million babies are

Preterm birth is the major cause of death of under 5 years of age all around the world...

> and a significant cause of long-term loss of human potential amongst survivors

Thank You

