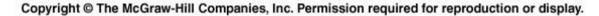
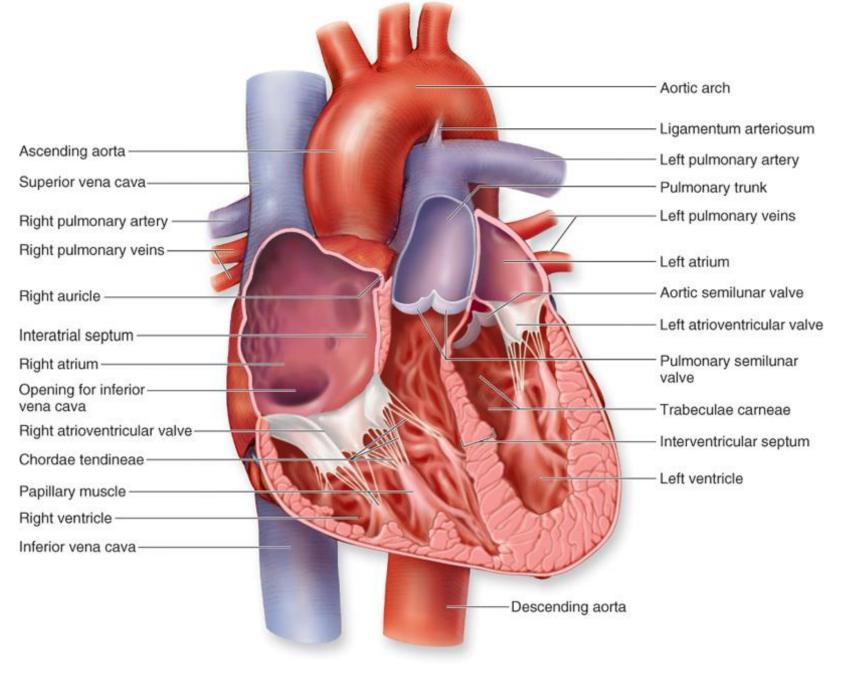
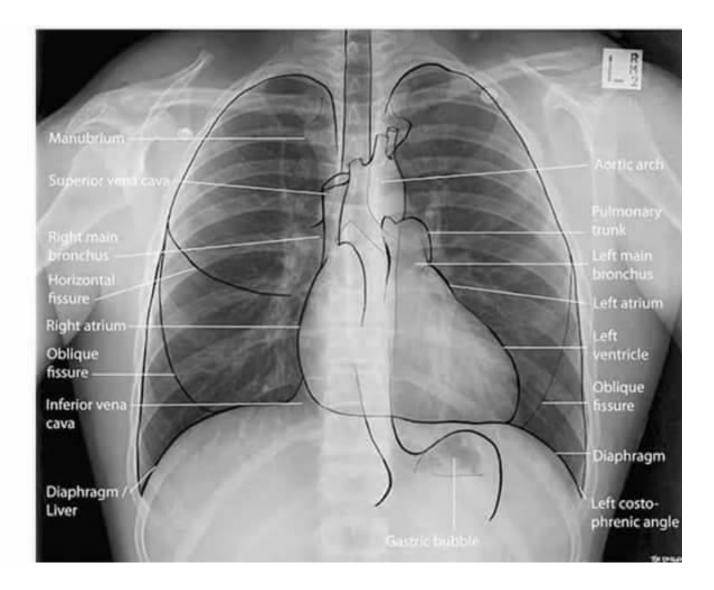
Heart function and Heart failure in children

lyad AL-Ammouri

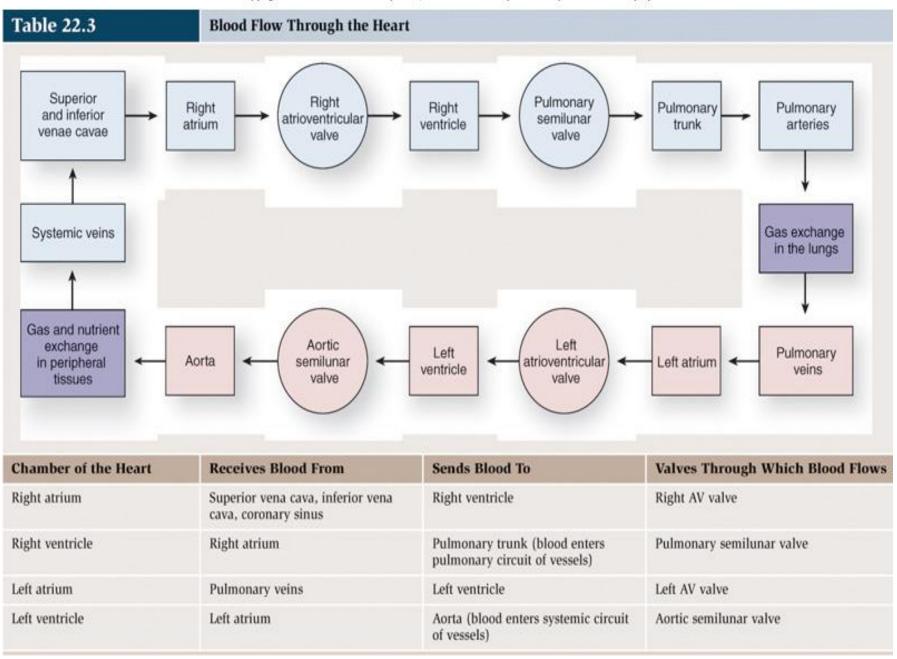
Department of pediatrics, the University of Jordan

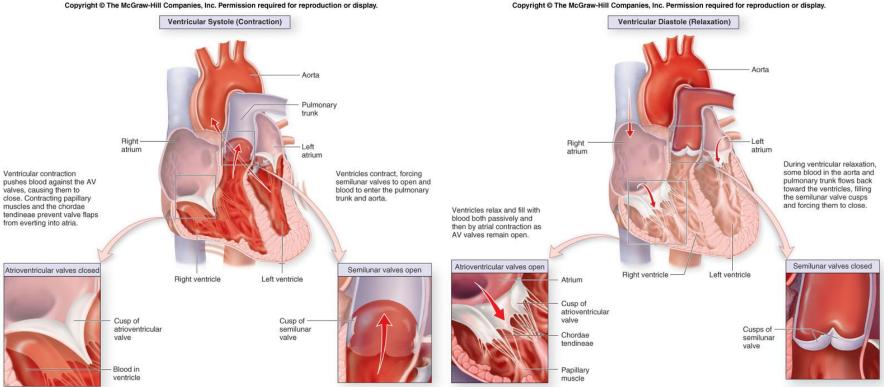

Fifth Year, JU 2022


Outline


- Introduction
 - Anatomy revision
 - Physiology and cardiac output
 - Cardiac cycle revision
- Heart failure
 - Definition
 - Pathophysiology
 - Clinical picture and diagnosis
 - Etiology
 - Management guide

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ventricular systole and diastole

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cardiac function

- Pumping of oxygenated blood to the systemic organs through systemic circulation, and pumping of de-oxygenated blood to the pulmonary circulation
- Blood flow to the systemic circulation is measured as liters/minute and is called (Cardiac output)
- Cardiac output is regulated by tissue demand for oxygen
- Cardiac output is a result of : stroke volume X heart rate per minute
- Stroke volume is the volume of blood ejected to the systemic circulation in one beat
- In normal heart

stroke volume = end diastolic volume - end systolic volume

Cardiac output

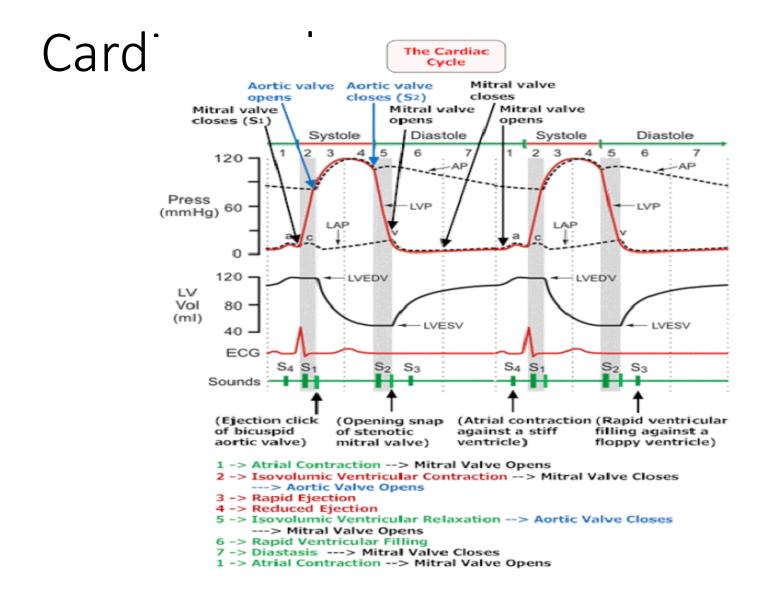
Heart rate

Х

Stroke Volume

Regulated by sympathetic and Parasympathetic nervous system

Symp $\rightarrow \uparrow$ Parasymp $\rightarrow \downarrow$ Determined by: •Preload (volume) •Afterload (resistence) •Caontractility


Stroke volume

LVEDV=80 (preload) LVESV=20 Stroke volume= LVEDV-LVESV=60 60 80

Preload: volume of blood in LV at end diastole

(venous return)

- Afterload: resistence against which the LV is pumping
- Contractility: degree of shortening of the muscle when it contracts (strength of muscle)

Heart Failure

Simply stated

Heart failure is the failure of the heart to produce cardiac output that meets the metabolic demand

Etiology and clinical presentation differs significantly between children and adults.

Pathophysiology

What happens when supply becomes less than demand

Compensation mechanisms start to operate

Renin-Angiotensin-Aldosterone

Main effects:

- Fluid retention
- vasoconstriction

Autonomic nervous system

Main effects:

- Tachycardia
- Increased myocardial contractility
- vasoconstriction

Clinical presentations (SIGNS & SYMPTOMS)

S&S related to Fluid retention → congestion

S&S related to symp. stimulation

S&S related to low tissue perfusion

Pulmonary congestion: tachypnea, dyspnea, respiratory distress

Systemic congestion: edema, hepatomegaly, increased venous pressure Tachycardia/ palpitation

Diaphoresis (infants)

Irritability (infants)

S&S of vasoconstriction (cold extremities, poor pulses) Decreased capillary refil time

Exercise intolerance/fatigue (in infants this results in poor feeding and poor weight gain)

Low urine output

Altered level of consciousness

S&S of metabolic acidosis

AND: S&S of the etiology of heart failure

Diagnosis of heart failure

Mainly depends on the clinical features

Other helpful investigations:

ECG: if there is suspicion of arrhythmogenic cause, or secondary rhythm disturbance. Also helps in some structural heart disease

CXR: May show cardiomegaly (not specific for etiology), shows the degree of pulmonary adema

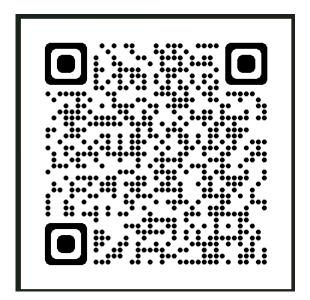
Echocardiography: Very helpful in determining etiology of HF

Other investigations helps determining severity/complications/etiology:

1)

- 2)
- 3)

Etiology of HF in children


CHD with increased pulmonary blood flow	CHD with flow obstruction	Poor myocardial contractility	HF due to dysrrhythmia
 VSD (holosystolic murmur) PDA (machinery murmur, wide pulse pressure) AV canal defect (Down syndrome) Truncus arteriosus (mild desaturation, possible ejection click, wide pulse pressure) 	 Aortic stenosis (click, radiation to the neck) Coarctation of aorta (high blood pressure, poor femoral pulses) 	 Dilated cardiomyopat hy (family history) Myocarditis (hx of viral infection) Sepsis: resulting in septic shock/ organ damage Rare- coronary artery anomalies 	 SVT (HR >220) Bradycardia (complete heart block), congenital CHB presents earlier

High output failure: High demands Examples: thyrotoxicosis, Severe anemia, extensive AV malformation

Management guide for HF in children

Nutritional support	Increase caloric intake (fortified formulas, more frequent feeds, NG feeding if needed)	
	Diuretics: (examples: furosemide, spironolactone) decrease the congestion, improves respiratory distress	
Medications	Afterload reduction (Examples: ACE, ARB): improve tissue perfusion in some cases may manipulate the shunts (in CHD) Inotropic support: Examples are sympathomimetics, phosphodiesterase inhibitors, digoxin	
	phosphodiesterase inhibitors, digoxin Beta-blockers: for long term use	
Treating the etiology	CHD→ repair Arrhtyhmia → Rhythm control, pacemakers Devices and transplant for refractory cases	

END

Additional reading: <u>Pediatric Heart Failure: A Practical Guide to Diagnosis and Management - Pediatrics &</u> <u>Neonatology (pediatr-neonatol.com)</u>