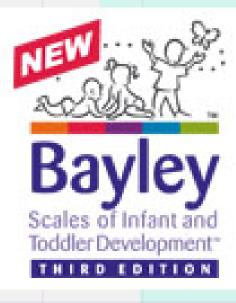


What is normal development

humans develop through a dynamique sequential process since the early days of life as embryo and the process continues after birth

Child's development is a dynamic process



Developmental screening tools

- Provider
- Denver
- CAT/CLAMS
- Bayley
- Brigance
- DIAL-R
- Parent
- Ages and Stages Questionnaire
- Parent's Evaluations of Developmental Status

• Emerging patterns of development

Table 10-2 Emerging Patterns of Behavior During the 1st Yr of Life*

NEONATAL PERIOD (1ST 4 WK)

Prone: Lies in flexed attitude; turns head from side to side; head sags on ventral suspension

Supine: Generally flexed and a little stiff

Visual: May fixate face on light in line of vision; "doll's-eye" movement of eyes on turning of the body

Reflex: Moro response active; stepping and placing reflexes; grasp reflex active

Social: Visual preference for human face

AT 1 MO

Prone: Legs more extended; holds chin up; turns head; head lifted momentarily to plane of body on ventral suspension

Supine: Tonic neck posture predominates; supple and relaxed; head lags when pulled to sitting position

Visual: Watches person; follows moving object

Social: Body movements in cadence with voice of other in social contact; beginning to smile

AT 2 MO

Prone: Raises head slightly farther; head sustained in plane of body on ventral suspension
Supine: Tonic neck posture predominates; head lags when pulled to sitting position

Visual: Follows moving object 180 degrees

Social: Smiles on social contact; listens to voice and coos

AT 3 MO

Prone: Lifts head and chest with arms extended; head above plane of body on ventral suspension

Supine: Tonic neck posture predominates; reaches toward and misses objects; waves at toy

Sitting: Head lag partially compensated when pulled to sitting position; early head control with bobbing motion; back rounded

Reflex: Typical Moro response has not persisted; makes defensive movements or selective withdrawal reactions

Social: Sustained social contact; listens to music; says "aah, ngah"

AT 4 MO

Prone: Lifts head and chest, with head in approximately vertical axis; legs extended

Supine: Symmetric posture predominates, hands in midline; reaches and grasps objects and brings them to mouth
No head lag when pulled to sitting position; head steady, tipped forward; enjoys sitting with full truncal support

Standing: When held erect, pushes with feet

Adaptive: Sees raisin, but makes no move to reach for it

Social: Laughs out loud; may show displeasure if social contact is broken; excited at sight of food

AT 7 MO

Prone: Rolls over; pivots; crawls or creep-crawls (Knobloch)

Supine: Lifts head; rolls over; squirms

Sitting: Sits briefly, with support of pelvis; leans forward on hands; back rounded

Standing: May support most of weight; bounces actively

Adaptive: Reaches out for and grasps large object; transfers objects from hand to hand; grasp uses radial palm; rakes at raisin

Language: Forms polysyllabic vowel sounds

Social: Prefers mother; babbles; enjoys mirror; responds to changes in emotional content of social contact

AT 10 MO

Sitting: Sits up alone and indefinitely without support, with back straight

Standing: Pulls to standing position; "cruises" or walks holding on to furniture

Motor: Creeps or crawls

Adaptive: Grasps objects with thumb and forefinger; pokes at things with forefinger; picks up pellet with assisted pincer movement;

uncovers hidden toy; attempts to retrieve dropped object; releases object grasped by other person

Language: Repetitive consonant sounds ("mama," "dada")

Social: Responds to sound of name; plays peek-a-boo or pat-a-cake; waves bye-bye

AT 1 YR

Motor: Walks with one hand held; rises independently, takes several steps (Knobloch)

Adaptive: Picks up raisin with unassisted pincer movement of forefinger and thumb; releases object to other person on request or gesture

Language: Says a few words besides "mama," "dada"

Social: Plays simple ball game; makes postural adjustment to dressing

15 MO

Motor: Walks alone; crawls up stairs

Adaptive: Makes tower of 3 cubes; makes a line with crayon;

inserts raisin in bottle

Language: Jargon; follows simple commands; may name a familiar

object (e.g., ball); responds to his/her name

Social: Indicates some desires or needs by pointing; hugs

parents

18 MO

Motor: Runs stiffly; sits on small chair; walks up stairs with 1

hand held; explores drawers and wastebaskets

Adaptive: Makes tower of 4 cubes; imitates scribbling; imitates

vertical stroke; dumps raisin from bottle

Language: 10 words (average); names pictures; identifies 1 or

more parts of body

Social: Feeds self; seeks help when in trouble; may complain

when wet or soiled; kisses parent with pucker

24 MO

Motor: Runs well, walks up and down stairs, 1 step at a time;

opens doors; climbs on furniture; jumps

Adaptive: Makes tower of 7 cubes (6 at 21 mo); scribbles in

circular pattern; imitates horizontal stroke; folds

paper once imitatively

Language: Puts 3 words together (subject, verb, object)

Social: Handles spoon well; often tells about immediate

experiences; helps to undress; listens to stories when

shown pictures

30 MO

Motor:

Goes up stairs alternating feet

Adaptive: Makes tower of 9 cubes; makes vertical and horizontal

strokes, but generally will not join them to make cross; imitates circular stroke, forming closed figure

Language: Refers to self by pronoun "I"; knows full name

Social: Helps put things away; pretends in play

36 MO

Motor: Rides tricycle; stands momentarily on 1 foot

Adaptive: Makes tower of 10 cubes; imitates construction of

"bridge" of 3 cubes; copies circle; imitates cross

Language: Knows age and sex; counts 3 objects correctly; repeats

3 numbers or a sentence of 6 syllables; most of

speech intelligible to strangers

Social: Plays simple games (in "parallel" with other children);

helps in dressing (unbuttons clothing and puts on

choos), machoe hande

48 MO

Motor: Hops on 1 foot; throws ball overhand; uses scissors to

cut out pictures; climbs well

Adaptive: Copies bridge from model; imitates construction of

"gate" of 5 cubes; copies cross and square; draws man with 2-4 parts besides head; identifies longer of

2 lines

Language: Counts 4 pennies accurately; tells story

Social: Plays with several children, with beginning of social

interaction and role-playing; goes to toilet alone

60 MO

Motor: Skips

Adaptive: Draws triangle from copy; names heavier of 2 weights

Language: Names 4 colors; repeats sentence of 10 syllables;

counts 10 pennies correctly

Social: Dresses and undresses; asks questions about meaning

of words; engages in domestic role-playing

Red flags worrisome if still not reached

babbling by 12 months

gesturing (e.g., pointing, waving bye-bye) by 12 months

single words by 16 months

two-word spontaneous (not just echolalic) phrases by 24 months

loss of any language or social skills at any age

Videos: how to perform developmental assessment

https://mrcpch.
paediatrics.co.uk/
development/
development-videos/

Developmental delay

Child not reaching developmental milestones at the expected age, even after allowing the broad variation of normality

Global developmental delay: when >2 domains in development are delayed

The earlier the identification of these children the better outcome(birth-2years)

Favorable
environment:
enhances +
optimize brain
development

Consequences of Early Childhood Developmental Problems

Low selfesteem Poor relationship formation

Poor academic success

Conduct problems

Truancy and school drop-out

Unemployment

Poor quality parenting skills

Developmental surveillance

5-10% of pediatric population have developmental disabilities

To identify these children: developmental <u>surveillance</u>:

1-observe infant

2-take developmental history

3-ellicit parental concerns

Developmental <u>screen</u>: necessary adjunct

Developmental delay

Developmental delay:Slow progress in the attainment of developmental milestones

Psychomotor regression: loss of developmental milestones previously attained.

Two important questions to answer

Is developmental delay restricted to specific areas or is it global (2 or more)?

Is it development delayed or is child regressing

Determine is the delay static or progressive

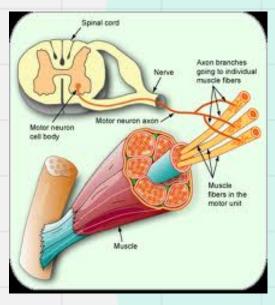
Predominant speech delay

Hearing impairment

Autism

Bilateral hippocampal sclerosis

Congenital bilateral perisylvian syndrome


Motor delay Ataxia Hemiplegia paraplegia Hypotonia Neuromuscular disorders

Determine if the motor delay is due to central (upper motor neurone disorder) or peripheral (lower motor neurone disorder

Or combined: example Duchenne muscle dystrophy, Cong muscle dystrophies, Metachroamtic leukodystrophy

Peripheral

Central

Differentiating central from peripheral causes: hx and ex

- > Normal or Brisk reflexes
- Other abnormal brain functions: delay, seizures
- > Fisting

- > Scissoring on vertical suspension
- Dysmorphic features
- > Extra-cranial organ malformations

- > Absent or Depressed reflexes
- > Intact brain function
- > Awake and alert
- > Muscle atrophy
- > Profound weakness
- > Fasciculations

No extra-cranial organ malformations

Global developmental delay (2 or more): examples

- Perinatal insult : asphyxia , congenital infections, bilirubin toxicity
- Chromosomal /genetic
- Metabolic : hypothyroidism , neurometabolic disorders
- Cerebral malformations
- Progressive neurodegenerative disorders

Determine is it static or progressive

Age of onset of symptoms

Clues in history and examination

Evaluation of the child with global developmental delay

Look for the hints

History : antenatal, birth history , past history

Age of Onset of symptoms :static or progressive

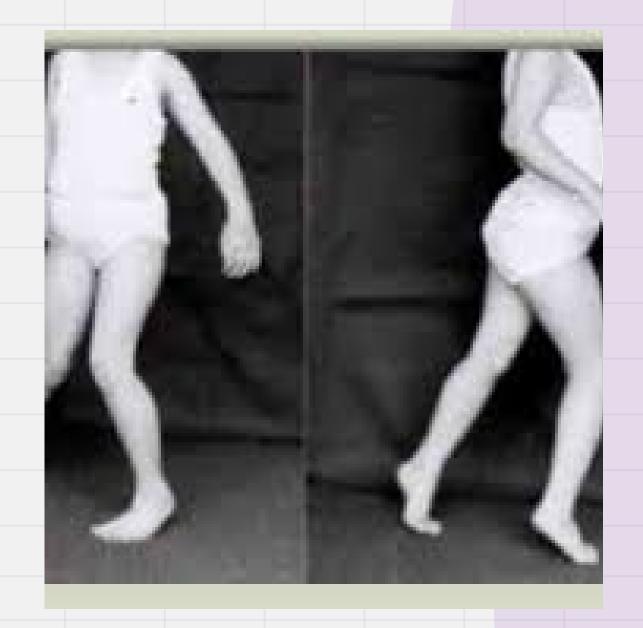
Family history (very detailed):consanguinity, similar cases, deaths in early infancy

Examination: dysmorphysm

systems involvement

Results of investigations

Clues in the history


Antenatal history: trauma, infection, death of a twin, hypertension, diabetes...

Birth history: weight, gestational age hyperbilirubinemia...

Past: meningitis, encephalitis, epilepsy trauma...

What is your most likely dx based on the clues

- 20 months old boy presented with history of delayed walking , he also has weakness of the right side of body
- Antenatal history revealed decreased fetal movement, he was born prematurely at 28 weeks of gestation

Cerebral palsy: definition

non progressive (static) disorder of motor function and movement that usually manifests early **in** life as a result of central nervous system damage to the developing brain

Most patients are identified by 2 years of age due to delayed motor milestones

More common in children who are born very prematurely or at term

Slightly higher prevalence in males M:F= 1.5:1

Poor prenatal care may increase the incidence of cerebral palsy

Onset

Prenatal

Perinatal

Post natal

Causes

In most cases, the exact cause is unknown but is most likely multifactorial

Majority of cases: not caused by hypoxic ischemic incidents occurring perinatally (as it was believed until recently.)

70-80% cases are prenatal in origin

Although prematurity is the most common known antecedent of CP, the majority of children who develop CP are born at term.

Causes

70% - 80% of cases of CP are due to antenatal factors

10% - 28% of cases are due to birth asphyxia in term and near-term infants

More than 1 etiologic factor is often identified.

The term CP is descriptive: different

etiologies and clinical presentations 1- According to the extremities involved

2-According to the characteristics of neurologic dysfunction.

3- Functional classification

Hemiplegic CP

Arm > leg

walks: tip toes, swing the affected leg (semicircular arc)

Corticosensory impairment: common

Mental retard.: 1/3

Seizures: 1/3

vision

Spastic quadreplegic CP

Generalized increase in muscle tone

Legs > arms

Opisthotonic posture (first year of life)

Difficulties in swallowing and articulation

Incoordination of oropharyngal m :recurrent pneumonia

Seizures:50%

Mental retardation: majority

Auditory , visual abn : common

Diplegic

- Bilateral leg involvement
- Commonly some degree of UL involvement
- Infant : scissoring , older child : tip toewalk
- Seizures , MR , visual abn

According to neurological dysfunction:

- Spastic: most common type (70%-80%)
- Ataxic: with cerebellar involvement
- Dyskinetic (extrapyramidal, choreoathetoid): due to predominant basal ganglia involvement in patients with acute severe hypoxia and kernicterus. Symptoms consistent with a movement disorder may appear later in life
- Mixed

Diagnosis: HX + EX

Diagnosis: always a motor deficit

usual presentation :delayed motor milestones

hand preference < 3 years: relative weakness of 1 side.

History: the child is not losing function = the patient does not have a progressive disease.

Examination: hypotonia, spasticity, persistent primitive reflexes, underdevelopment of parachute reflex

Associated conditions

Mental retardation: 30-50%

Ophthalmologic defects: 30%

Hearing impairment: 10%

Speech and language disorders :40%

Epilepsy: 30-40%

Mangement and ttt

Multidisciplinary team

goal for the treatment program:
maximize function + optimize
development = help them
participate in as many activities as
possible in multiple social settings

Types of interventions

Physical therapy

Orthopedic surgery (later)

Muscle tone management

orthosis

What is your diagnosis?
Clues in the family history

A 4 year old boy presented with history of global developmental delay, epilepsy and microcephaly

Parents are cousins, he has one cousin who was diagnosed to have phenylketonuria by neonatal screening

	Error of amino acids metabolism
	Autosomal recessive
	No acute clinical symptoms
	Untreated leads to mental retardation
phenylketonuria	Associated complications: behavior disorders, cataracts, skin disorders, and movement disorders
	First newborn screening test was developed in 1959
	Treatment: phenylalaine restricted diet (specialized formulas available)

What is your diagnosis:

Clues in the face

Clues: skin

Neurocutaneous disorders : examples

Neurofibromatosis type 1

Sturge weber syndrome

Tuberous scleoris

Clues in skin??

Neurofibromatosis type 1

Autosomal dominant with variable expression Most common neurocutaneous syndrome Diagnosis: dx criteria Macrocepahly is common Learning disability Risk of neoplastic disorders **Seziures Treatment: supportive**

	Autosomal dominant
Tuberous sclerosis	2 genes (TSC1 and TSC2)
	Characteristic skin lesions (ash leaf , shagreen patches , achromic spots , sebaceous adenoma)
	Epilepsy , developmental delay
	Subependymal hamartomas
	Dx : dx criteria

BOX 5-9

Clinical Diagnosis of Tuberous Sclerosis

Definite TSC: Two major features or one major feature plus two minor features

Probable TSC: One major feature plus one minor feature

Possible TSC: One major feature or two or more minor features

Major Features

- Cardiac rhabdomyoma, single or multiple
- Cortical tuber¹
- Facial angiofibromas or forehead plaque
- Hypomelanotic macules (three or more)
- Lymphangiomyomatosis²
- Multiple retinal nodular hamartomas
- Nontraumatic ungual or periungual fibromas
- Renal angiomyolipoma²

- Shagreen patch (connective tiss
- Subependymal nodule
- Subependymal giant cell astroc

MINOR FEATURES

- Bone cysts³
- Cerebral white matter radi lines^{1,3,4}
- · "Confetti" skin lesions
- Gingival fibromas
- Hamartomatous rectal polyps⁵
- Multiple randomly distributed enamel
- Multiple renal cysts⁵
- Nonrenal hamartoma⁵
- Retinal achromic patch

clues in skin: rash, dermatitis

- Biotinidase deficiency
 - Propionic acidemia(orgnic acidemia)
- Refsum disease(peroxysomal disorder)

Clues in hair: Abnormal hair

Eg:Menkes disease: global delay + hair coloreless , friable,kinky

Low cupper + cerulolasmin

Gricelli syndrome : Silvery hair

Clues in the eyes

Cataracts:

- -Galactosemia
- -Zellweger syndrome
- Lowe syndrome
- -Other conditions

- -Homocystinuria,
- Molybdenum co-factor deficiency
- -Sulfite oxidase deficiency



- Retinal degenerative changes
- -peroxisomal disorders
- -others

Cherry red spot : (mainly lipid storage disease)

- -Neimann pick
- -Tay sack
- -GM1 gangliosidosis
- -Sandhoff disease
- -Metachromatic leukodystrophy
- -mucolipidosis

History and examination: very important guides towards investigations and diagnosis

Then to summerize

If there is no clinical features to suggest a specific diagnosis → less likely to find a diagnosis

Lab investigations : necessary to reach for a final diagnosis

If family history of specific disorder - screen for that disorder

Lab investigations

If clue in examination: screen for that disorder

If no hint, what to do?

Hearing+ vision assessment

Should be done <u>for all</u> developmentally delayed children

Metabolic work up including test for thyroid
High resolution chromosomal microarray Karyotype: if microarray not available (yield is 3.7%): it is indicated in the evaluation even in the absence of dysmorphic features
Testing for fragile X (yield 2.6%)
Females: frequently affected, may also be considered for testing

Advancement in genetic testing

High resolution chromosomal microarray have a diagnostic yield of 15%-20%.

Targeted gene panels has 11-32% diagnostic rate

Whole exome sequencing :has a diagnostic yield of around 40%

whole genome sequencing: 42 %

EEG

Not recommended in the routine evaluation if child does not seize

Neuroimaging

MRI brain : abn
 detected in 48-65% of
 cases

Identified aetiology

Traditional tests:
 diagnostic yield 40% 60%

Brain & Development 33 (2011) 810-815

DEVELOPMENT

Official Journal of the Japanese Society of Child Neurology

www.elsevier.com/locate/braindev

Original article

Profile of developmental delay in children under five years of age in a highly consanguineous community: A hospital-based study – Jordan

Amira Masri a,*, Hanan Hamamy b, Amal Khreisat a

ⁿ Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, The University of Jordan, P.O. Box 1612, 11941 Amman, Jordan
^b Department of Genetic Medicine and Development, Geneva University Hospital, Geneva, Switzerland


Received 8 June 2010; received in revised form 3 November 2010; accepted 1 December 2010

Diagnostic rate 44.5%

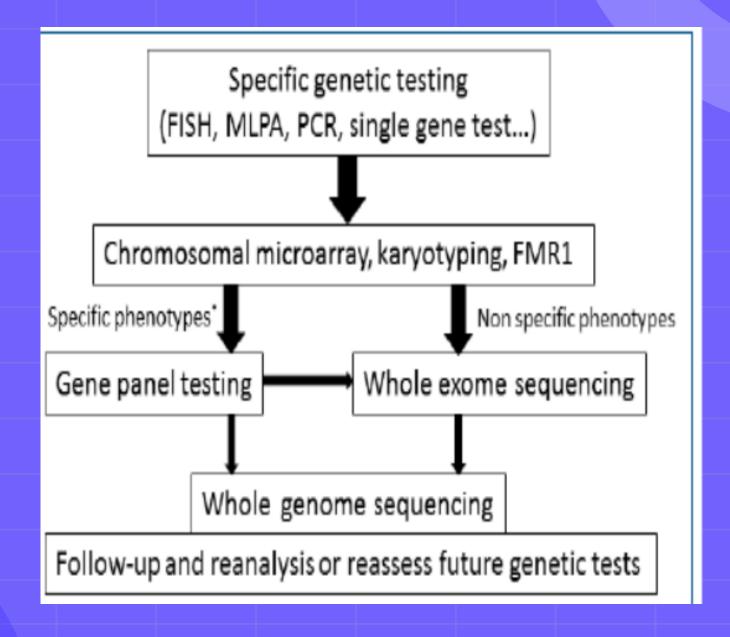
Abstract

Aim: To assess etiologies and risk factors for global developmental delay (GDD) in children.

Patients and methods: Between January 2006 and 2007, a retrospective study was carried out at the Child Neurology Clinic of Jordan University Hospital on all 229 children under five years of age presenting with GDD. To assess risk factors for GDD, 229 age-matched healthy children were included as controls.

Powerful tool for etiological discovery in neurodevelopmental disorders

A high-throughput genetic sequencing method that focuses on the protein-coding regions of the genome


While protein-coding genes constitute only 1% of the human genome, they are home to 85 % of mutations underlying monogenic disorders

Diagnostic rate: 40-60%

Should be done if all of the previous investigations did no t reveal any cause

Developmental assessment is very crucial

Conclusion

History and examination are very helpful

Tremendous improvement in genetic progress gives hope to many families

Thank you

