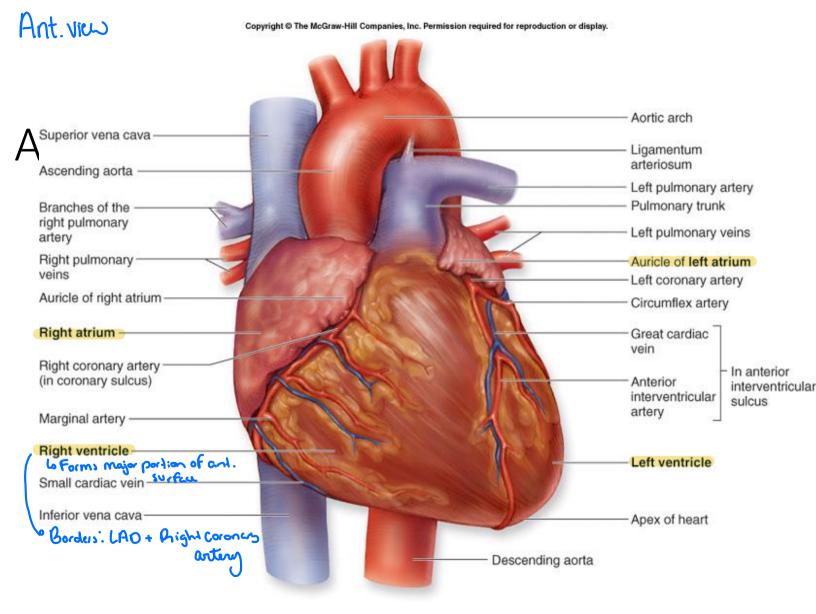
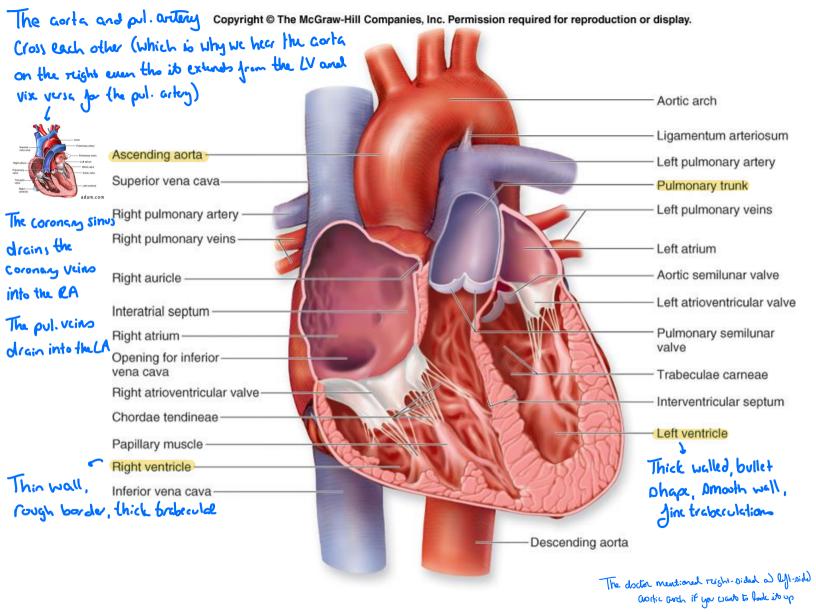
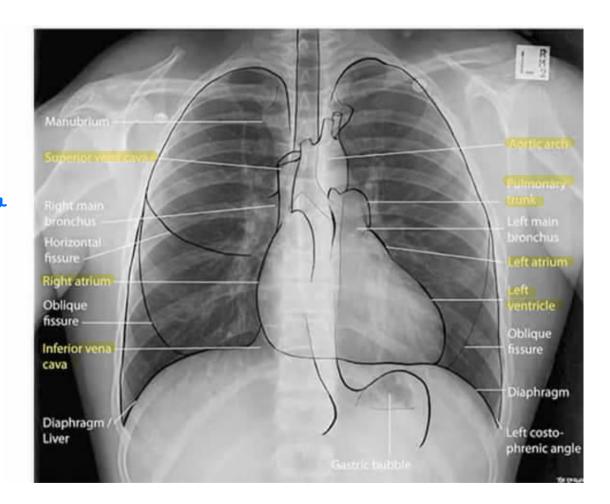
Heart function and Heart failure in children

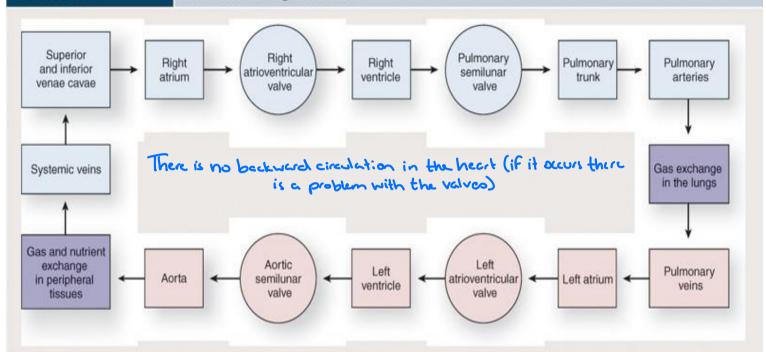

Iyad AL-Ammouri


Department of pediatrics, the University of Jordan

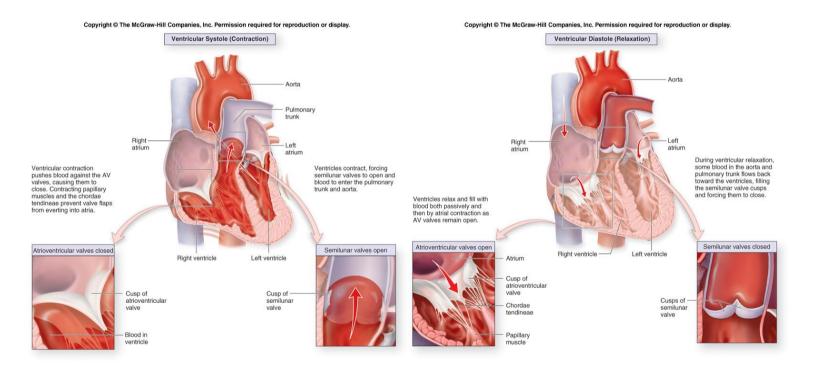
Fifth Year, JU 2022


Outline

- Introduction
 - Anatomy revision
 - Physiology and cardiac output
 - Cardiac cycle revision
- Heart failure
 - Definition
 - Pathophysiology
 - Clinical picture and diagnosis
 - Etiology
 - Management guide



You can't see the RV on AP X-ray



Blood Flow Through the Heart

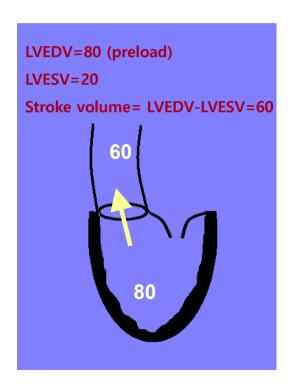
Chamber of the Heart	Receives Blood From	Sends Blood To	Valves Through Which Blood Flows
Right atrium	Superior vena cava, inferior vena cava, coronary sinus	Right ventricle	Right AV valve
Right ventricle	Right atrium	Pulmonary trunk (blood enters pulmonary circuit of vessels)	Pulmonary semilunar valve
Left atrium	Pulmonary veins	Left ventricle	Left AV valve
Left ventricle	Left atrium	Aorta (blood enters systemic circuit of vessels)	Aortic semilunar valve

Ventricular systole and diastole

There should be no shunding bit the systemic and pul. circulations.
The circults are in Derive, not parallel

Cardiac function

- Pumping of oxygenated blood to the systemic organs through systemic circulation, and pumping of de-oxygenated blood to the pulmonary circulation
- Blood flow to the systemic circulation is measured as liters/minute and is called (Cardiac output)
- Cardiac output is regulated by tissue demand for oxygen
- Cardiac output is a result of: stroke volume X heart rate per minute
- Stroke volume is the volume of blood ejected to the systemic circulation in one beat
- In normal heart


stroke volume = end diastolic volume - end systolic volume

SV is what reaches the Dystemic Circulation, not necessarily what's pumped by the LV las in a VSD blood goes to the Rt bide or WIMR effective co is smaller than what the LV is pumping)

Cardiac output

X Stroke Volume Heart rate Regulated by sympathetic and Determined by: 1 preloc) = TSV Parasympathetic •Preload (volume) Tafterload = L SV •Afterload (resistence) nervous system •Caontractility (7 by 5N) Symp→ ↑ Parasymp → ↓ Frank-Starling Preload car's indefinitely T SV (Frank-Storling day) Ventricular end-diastolic volume

Stroke volume

Preload: volume of blood in LV at end diastole

(venous return)

Afterload: resistence against which the LV is pumping

Contractility: degree of shortening of the muscle when it contracts (strength of muscle)

In HF we like to give

vano dilutors

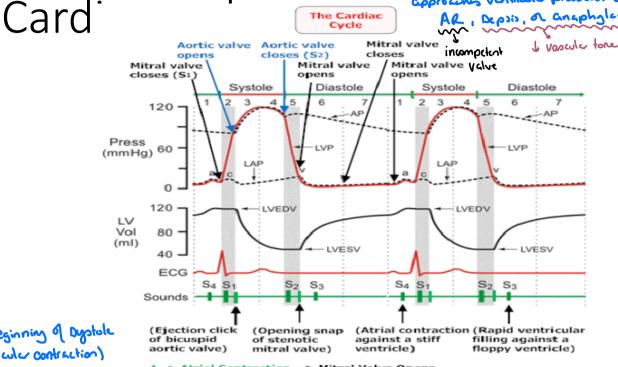
(I afterbad) to help

ease the work of pumpins

of the LV

(but we have to be careful

bole too much would IBP)


The aortic value + vancular tone is what maintains disololic antic pressure (dotte) line) of 80

Widened pulse pressure (where the aprile diest-lie pressure

approaches Ventricales pressure) could be due to

The Cardiac Cycle

AR, Depois, or anaphylexis

S1 = beginning of Dyptole (ventricular contraction)

SZ = beginning 9 diastule

1 -> Atrial Contraction --> Mitral Valve Opens

2 -> Isovolumic Ventricular Contraction --> Mitral Valve Closes

---> Aortic Valve Opens

3 -> Rapid Ejection

4 -> Reduced Ejection

5 -> Isovolumic Ventricular Relaxation --> Aortic Valve Closes

---> Mitral Valve Opens

6 -> Rapid Ventricular Filling

7 -> Diastasis ---> Mitral Valve Closes 1 -> Atrial Contraction --> Mitral Valve Opens

Heart Failure

Simply stated

Heart failure is the failure of the heart to produce cardiac output that meets the metabolic demand

Etiology and clinical presentation differs significantly between children and adults.

mostly due to a congenitud / Datactures

Comostly due to 140 and cardiomyopathy

In high output HF (like from hyperthyroidism) the problem so from abonomally high metabolic demand

Pathophysiology

What happens when supply becomes less than demand

Compensation mechanisms start to operate

Renin-Angiotensin-Aldosterone

Autonomic nervous system

Guick Mesponoc

to T Orclos

Main effects:

- Fluid retention (classicon)
- vasoconstriction (angiotensia)

Over -compensation can end up as a burden to the heart which is why we use Acei/ARBs to freet HF

Main effects:

- Tachycardia
- Increased myocardial contractility
- vasoconstriction

Clinical presentations (SIGNS & SYMPTOMS)

S&S related to Fluid retention → congestion

S&S related to symp. stimulation

S&S related to low tissue perfusion

Pulmonary congestion: tachypnea, dyspnea, respiratory distress

Systemic congestion: edema, hepatomegaly, increased venous pressure

Tachycardia/ palpitation

Diaphoresis (infants)

Irritability (infants)

S&S of vasoconstriction (cold extremities, poor pulses)

Decreased capillary refil time

Exercise intolerance/fatigue (in infants this results in poor feeding and poor weight gain)

Low urine output

Altered level of consciousness

S&S of metabolic acidosis

AND: S&S of the etiology of heart failure

Diagnosis of heart failure

Mainly depends on the clinical features

Other helpful investigations:

ECG: if there is suspicion of arrhythmogenic cause, or secondary rhythm disturbance. Also helps in some structural heart disease

CXR: May show cardiomegaly (not specific for etiology), shows the degree of pulmonary adema

Echocardiography: Very helpful in determining etiology of HF

Other investigations helps determining severity/complications/etiology:

- 1)
- 2)
- 3)

Etiology of HF in children

CHD with increased pulmonary blood flow

- VSD (holosystolic murmur)
- PDA (machinery murmur, wide pulse pressure)
- AV canal defect (Down syndrome)
- Truncus arteriosus

(mild desaturation, possible ejection click, wide pulse pressure)

CHD with flow obstruction

- Aortic stenosis (click, radiation to the neck)
- Coarctation
 of aorta (high
 blood pressure, poor
 femoral pulses)

Poor myocardial contractility

- Dilated cardiomyopat hy (family history)
- Myocarditis (hx of viral infection)
- Sepsis: resulting in septic shock/ organ damage
- Rare- coronary artery anomalies

dysrrhythmia

HF due to

- SVT (HR >220)
- Bradycardia
 (complete heart block), congenital
 CHB presents earlier

High output failure: High demands
Examples: thyrotoxicosis, Severe anemia, extensive AV malformation

Management guide for HF in children

Nutritional support

Increase caloric intake (fortified formulas, more frequent feeds, NG feeding if needed)

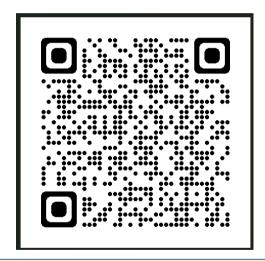
Medications

Diuretics: (examples: furosemide, spironolactone) decrease the congestion, improves respiratory distress

Afterload reduction (Examples: ACE, ARB): improve tissue perfusion, in some cases may manipulate the shunts (in CHD)

Inotropic support: Examples are sympathomimetics, phosphodiesterase inhibitors, digoxin

Beta-blockers: for long term use


Treating the etiology

CHD→ repair

Arrhtyhmia → Rhythm control, pacemakers...

Devices and transplant for refractory cases

END

Additional reading: <u>Pediatric Heart Failure</u>: A <u>Practical Guide to Diagnosis and Management - Pediatrics & Neonatology (pediatr-neonatol.com)</u>