Cyanide Poisoning

Abdelkader Battah, M.D, Ph.D. Professor of Toxicology, School of Medicine The University of Jordan

Sources

- Cyanide (hydrocyanic acid, prussic acid)
- Sodium nitroprusside
- Fire victims
- Trace are produced indigenously from Vitamin B12 metabolism
- Amygdalins, which are hydrolyzed to hydrogen cyanide is present in the seeds of apple, peach, plum, apricot, cherry, and bitter almond.
- Industrial chemicals;
- Electroplating, electro-polishing, extraction of gold and silver from ores, plastic manufacture, fumigant

Mechanism of Toxicity

- Histotoxic anoxia
- It results
 - From binding of CN with the Ferric ion on the a-a³
 complex within the Cytochrome complex
 - The tissue will not be able to utilize Oxygen
 - Anaerobic respiration
 - No production of ATP
 - Oxygen will remain in the venous blood

Toxicity

- Metabolism:
 - Rhodanese enzyme → thiocyanate → renal excretion (major pathway)
 - Cobalamine + cyanide \rightarrow Cyanocobalamin
 - Excreted via breath and sweat

Signs and Symptoms cyanide poisoning

- Major organs affected are CNS and cardiovascular system
 - Weakness
 - Dizziness
 - Headache
 - Nausea and vomiting
 - Tachycardia
 - Flushing

Treatment

- ABC
- Decontamination
- Antidote
- Continuous care

- Antidote :
 - Amyl nitrite inhalation , 0.3 ml
 - Sodium nitrite, 300 mg in 10 ml
 - Sodium thiosulfate, 12.5 g in 50 ml

• Hb-Fe⁺² + NO₂ \rightarrow Hb-Fe⁺³ + NO

- Hb-Fe ⁺³ + CN-cytochrome-Fe⁺³ → CN-HB-Fe⁺³
 + cytochrome-Fe⁺³
- CN-Hb-Fe⁺³ +Na₂S₂O₃ \rightarrow CN-S+Na₂SO₃+Hb-Fe⁺³