Congenital diaphragmatic hernia

A developmental discontinuity of the diaphragm that allows abdominal viscera to herniate into the chest

Diaphragmatic eventration: abnormal elevation of congenitally thin, hypoplastic but intact diaphragm. Can be total or partial.

Etiology: mostly sporadic with environmental effects (vit.A deficiency, thalidomide, anticonvulsants, quinines).

- Types: a. Postero-lateral hernia (Bochdalek): most common (80-90%), 80-85% on the left side
 - b. Anterior hernia (Morgagni-Larrey): 2% of all CDHs
 - c. **Central** hernia: extremely rare, involves the central tendon
 - d. Diaphragm agenesis

Why so serious?

- a. Fetal mortality: hydrops fetalis, stillbirths
- **b.** Neonates: pulmonary hypoplasia, persistent pulmonary hypertension, right-to-left shunting, hypoxemia and acidosis, cardiorespiratory failure, and mortality
- c. Infants & children: respiratory and GI manifestations, can be asymptomatic (incidental).

Classification:

- **1. Isolated CDH:** 50-70% of cases, ↑ survival rate.
- 2. Complex CDH: 30-50%, \downarrow survival rate. Associated with structural malformations, chromosomal abnormalities, and underlying syndromes.

Diagnosis:

- a. Prenatally: fetal ultrasound, and fetal MRI
- b. Postnatally: respiratory distress, PEx (scaphoid abdomen, absent breath sounds, bowel sounds in chest), CXR, +/- CT or MRI, +/- GI contrast study
- c. Infants and children: respiratory or GI symptoms, PEx, incidentally on CXR, (+/- CT, MRI, GI contrast study).

Prognostic factors:

	Survival rate (75% normally)	
Associated malformations	\downarrow	
Fetal lung volume	↓ if <30% of expected lung volume for GA	
Right-sided defects	↓ to 50%	↑ ECMO and patch rate
Liver herniation	↓ to 45%	
Lung area to head circumference ratio (LHR)	(√ratio means small lungs) more indicative of morbidity than mortality	

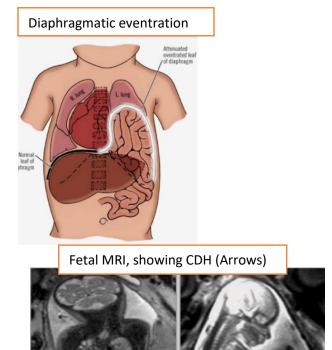
Management:

Prenatal management	Postnatal management
 screening for associated abnormalities 	 optimizing cardiorespiratory status: reduce lung
– fetal ECG	compression, ventilatory support, cardiovascular
genetic studies	support, correction of acid-base status, correction of
 family counseling 	pulmonary hypertension
in utero fetal therapy: investigational procedures,	 achieving hemodynamic stability (you need to know the
patch closure, fetoscopic endoluminal tracheal	details)
occlusion	 screening for associated malformation
 delivery planning 	 increased survival rate up to 92%

Operative management: CDH is not a surgical emergency

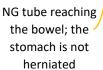
Minimally invasive surgery is preferred more than the open approach

decreased surgical stress, postop pain, and lenght of hospital stay better respiratory compliance increased survival rate avoidance of thoracotomy associated complications disadvantages CO2 insufflation causes hyper capnia, acidosis, increased pulmonary hypertension, and right-to-left shunting increased recurrence rate

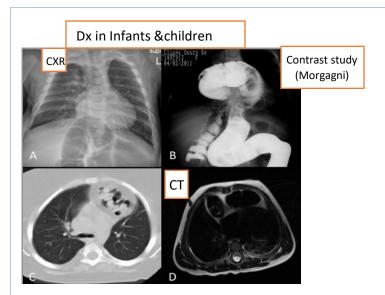

Criteria for MIS:

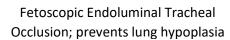
- Neonates: hemodynamic, radiographic and respiratory stability, and no severe associated cardiac malformations.
- Infants & children: late presenting or incidentally diagnosed

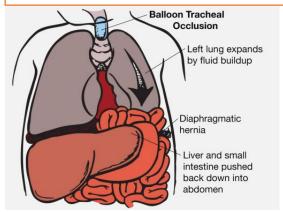
Outcomes: Mortality and morbidity are related to:

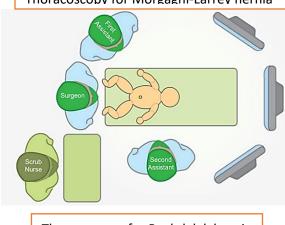

- Severity of lung hypoplasia
- Pulmonary hypertension
- Associated anomalies
- Prematurity

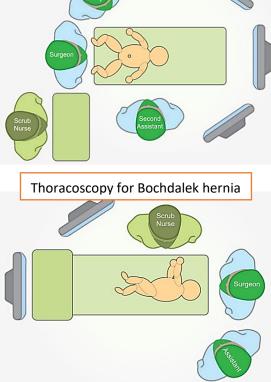
Appendix 1

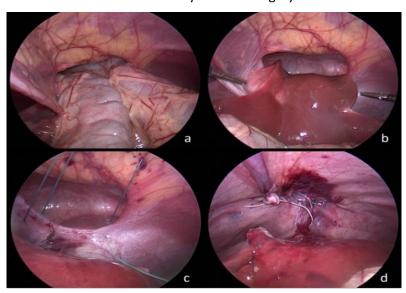

Chest x-ray in a neonate with CDH: bowel loops in the chest, mediastinum shifted to the right




CDH + NG tube only reaching the chest; stomach is herniated


Right sided CDH; note the liver is also herniated




Open CDH repair

Thoracoscopy for Morgagni-Larrey hernia

Minimally invasive surgery

Esophageal atresia (EA) and tracheoesophageal fistula (TEF)

Etiology:

- a. Genetic factors.
- b. Environmental factors: methimazole, OCPs, progesterone & estrogen exposure, maternal diabetes, thalidomide, fetal alcohol syndrome, maternal phenylketonuria.
- c. Chromosomal anomalies (trisomy 18&21).

Normal embryogenesis of the trachea and esophagus:

At the 4th week of gestation, the tracheoesophageal septum separates the foregut into ventral (respiratory) and dorsal (esophageal) parts. Separation of the septum occurs at 6-7th week.

Occurs 1 in 2500-3000 live births with slight male predominance (1.26:1)

Associated anomalies: (Isolated EA in 50% of cases)

Syndromic EA (50%): VACTERL and CHARGE

Classification: (check appendix 2 for pics)

- 85% proximal atresia with distal fistula
- 7% atresia without fistula
- 4% fistula without atresia
- 2% proximal atresia with proximal fistula
- <1% proximal atresia with proximal and distal fistulas (N or H type).

VACTERL:

V: vertebral

A: anorectal

C: cardiac (m/c)

T: tracheal

E: esophageal

R: renal

L: limb abnormalities

CHARGE:

C: coloboma

H: heart defects

A: atresia of the choana

R: developmental

retardation

G: genital hypoplasia

E: ear deformities

Diagnosis:

- 1. Antenatal: polyhydramnios, absent/small stomach bubble (both are nonspecific)
- **2. Postnatal:** excessive salivation, coiled feeding tube on CXR, +/- contrast study.

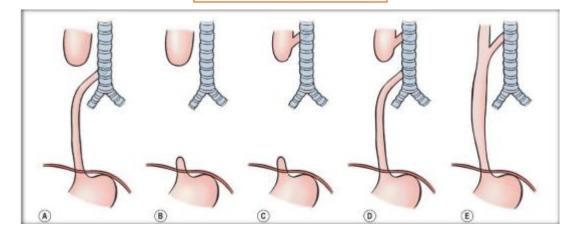
Presence/absence of gas in the stomach and bowel on AXR is to help determine the type of EA,

Management: EA & TEF are not surgical emergencies.

- Preoperative preparation:
 - a. Continuous suctioning tube in the upper esophagus.
 - b. Head-up position or on the side.
 - c. Gentle low-pressure ventilation if baby is in respiratory distress.
- Preoperative workup:

ECG (to rule out cardiac and aortic arch anomalies), renal ultrasound, and spine radiographs.

- Operative repair depends on the gap between esophageal ends:
 - a. <2 vertebrae → primary anastomosis
 - b. 2-6 vertebrae → gastrostomy + delayed primary anastomosis
 - c. >6 vertebrae → gastrostomy + esophagostomy + esophageal replacement later on
- Open (thoracotomy) vs. MIS (thoracoscopy)

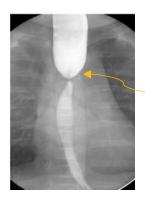

Complications:

- anastomotic strictures (17-60%)
- anastomotic leaks (3.5-17%)
- recurrent TEF (3-15%)
- tracheomalacia

- disordered peristalsis → GERD → esophageal cancer ???
- vocal cord dysfunction
- respiratory morbidity
- thoracotomy-related morbidity

Appendix 2

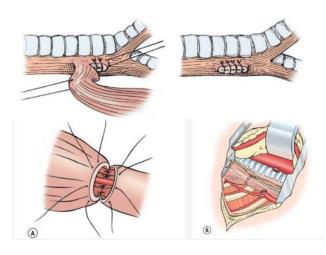
Classification of EA & TEF



Coiling of tube in the blind upper pouch around T2-T4. Note that there's gas in the stomach, indicating a TEF (type A).

Opacity of the abdomen + NG tube stopped at the upper esophagus → proximal atresia without TEF

Surgery complications:


Anastomotic stricture

Anastomotic leaks

Contrast through gastrostomy goes up to the lower esophagus, the NG tube is stopped at the upper esophagus, and the gap is measured 6 vertebral bodies.

Main principle of surgery: to remove the fistula and anastomose the two ends of the esophagus.

Note that the proximal part of the esophagus is dilated due to saliva collection.