

Pain

Dr. Abdelkarim AlOweidi Al-Abbadi Department of anesthesia and intensive care The University of Jordan .2021

Definition

 Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage.

Classification

Pain classified

- Acute pain < 12 weeks
- Chronic pain > 12 weeks
- Surgical pain
- Non-surgical pain
- Nociceptive: caused by stimulation of nociceptors
- Neuropathic: caused by nerve damage

Types of pain

Nociceptive pain (most common)

Somatic:

Sharp

Hot, Stinging Localized to injury site

Visceral:

Dull, Cramping, Colicky Poorly localized Might be referred

Neuropathic pain

History of peripheral/central nerve damage

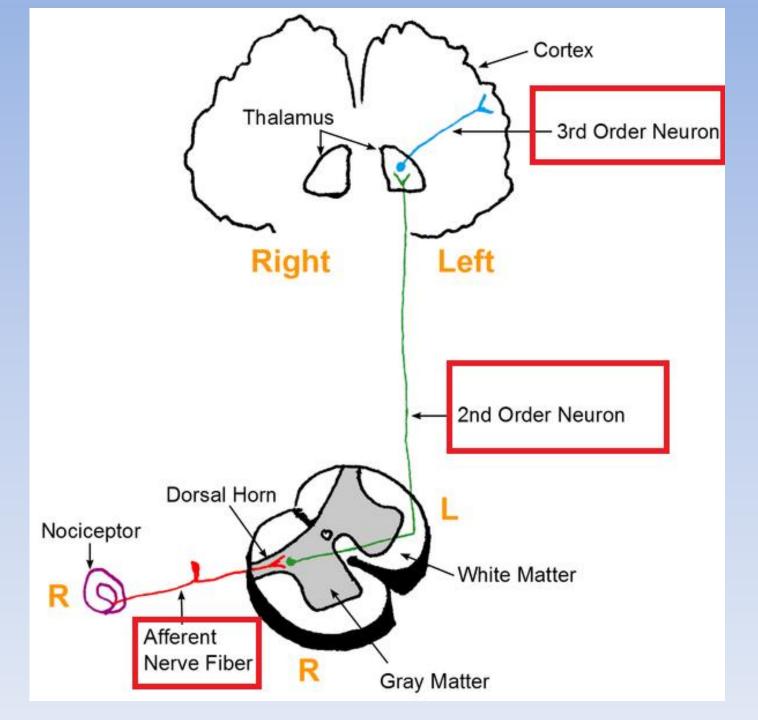
Poorly localized Spontaneous and paroxysmal Phantom phenomena Responds to neuropathic analgesia and poorly to opioids.

Transmission of pain

- Pain is sensed first by peripheral receptors
- Then it's transmitted by various nerves to the central nervous system through (pathways).
- Perception and reflexes are initiated in the CNS (brain and spinal cord).

Nociceptive pain receptors

- **Nociceptors**: is a free, unmyelinated nerve ending capable of transmitting pain.
- They respond to:
- <u>K +</u>
- Histamine
- Bradykinin
- Leukotrienes and prostaglandins Serotonin


Types of nociceptive pain

- <u>Superficial or cutaneous pain</u>, due to skin damage and characterized by sharp, well localized pain.
- <u>**Deep pain</u>**, a dull aching and poorly localized pain arising from structures such as muscles, tendons and ligaments.</u>
- <u>Visceral pain</u>, a dull, diffuse and poorly localized pain arising from the viscera; for example, spasm or overdistension of a hollow viscus.

Pain pathways

1- first order:

- From receptor to dorsal horn of spinal cord
- Via C or Aδ nerve fibers
- 2- second order:
- From dorsal horn to the thalamus, in the spinothalamic tract
- 3- third order:
- from thalamus to somatosensory cortex

Neuropathic pain

- Might be caused by direct trauma to nerve
- And may be caused by systemic diseases
- Most common cause is Diabetes Milletus

Acute pain

- Pain caused by noxious stimulation from injury, a disease process, and usually lasts less than 3-6 weeks.
- Nociceptive pain serves to detect, localize, and limit tissue damage.

Types of Acute pain

I- Somatic pain:

- A- **Superficial somatic pain** from skin, subcutaneous tissues.
- well localized and described as a sharp, pricking, throbbing, or burning sensation.
- B- **Deep somatic pain** from muscles, tendons, joints, or bones.
- Pain usually has a dull, aching quality and is less well localized.

Types of Acute pain

II- Visceral pain:

- Caused by a disease process or abnormal function involving an internal organ or its covering (e.g., parietal pleura, pericardium, or peritoneum).
- Usually dull aching and poorly localized
- Might be localized or referred.

Chronic pain

- Defined as pain that persists beyond the usual course of an acute disease or after a reasonable time for healing to occur (1–6 months).
- May be nociceptive, neuropathic, or mixed.
- When the sympathetic system plays a major role, it is termed *sympathetically maintained pain*.

Systemic response to pain

Acute pain:

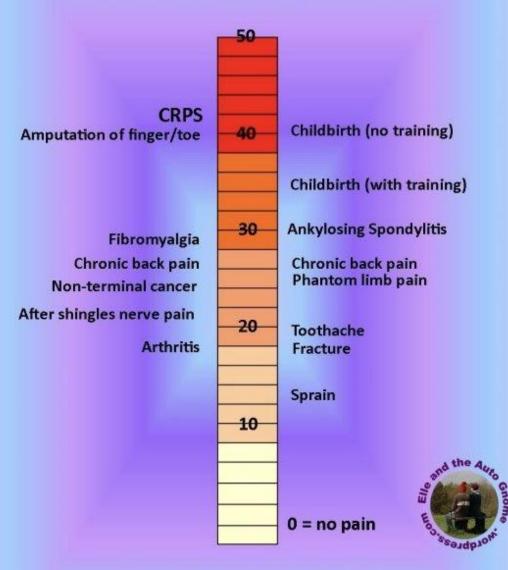
- Can affect nearly every organ function and may adversely affect perioperative morbidity and mortality
- **Cardiovascular:** Hypertension, tachycardia, enhanced myocardial irritability, may precipitate myocardial ischemia.
- Respiratory: Increase total body O2 consumption and CO2 production.
- **Gastrointestinal and urinary:** ileus and urinary retention.
- Endocrine: Increases catabolic hormones (catecholamines, cortisol, and glucagon) and decreases anabolic hormones.

Systemic response to pain

Chronic Pain

- Neuroendocrine stress response observed only in patients with severe recurring pain.
- Sleep and affective disturbances, particularly depression, are often prominent.

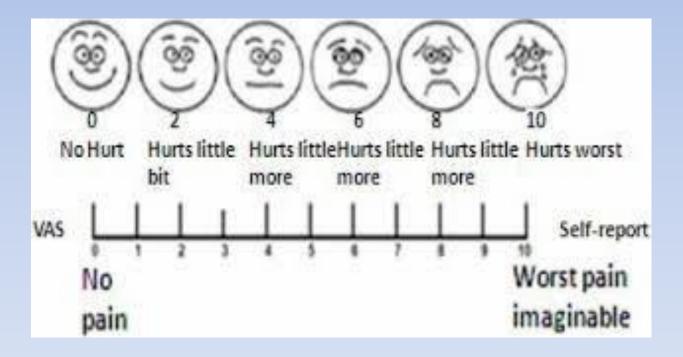
Evaluation of the Pain


- Pain Measurement
- The numerical rating scale, Wong-Baker FACES rating scale, visual analog scale (VAS), and McGill Pain Questionnaire (MPQ) are most commonly used.

Measurement of Pain

- 1- visual analogue scale: the patient puts a mark on a 10cm scale that represents pain severity.
- 2- verbal rating scale: the patient describes the pain; mild, moderate or severe.
- 3- numeric rating scale: the patient rates the pain from 10.

The McGill Pain Index


elleandtheautognome.wordpress.com

Rigorously tested scientific pain scale. Overall score is determined by compiling various numerical and cross-referenced descriptive words, allowing direct comparison

and the second se

Visual analogue scale

Psychological Evaluation

Most commonly used tests are:

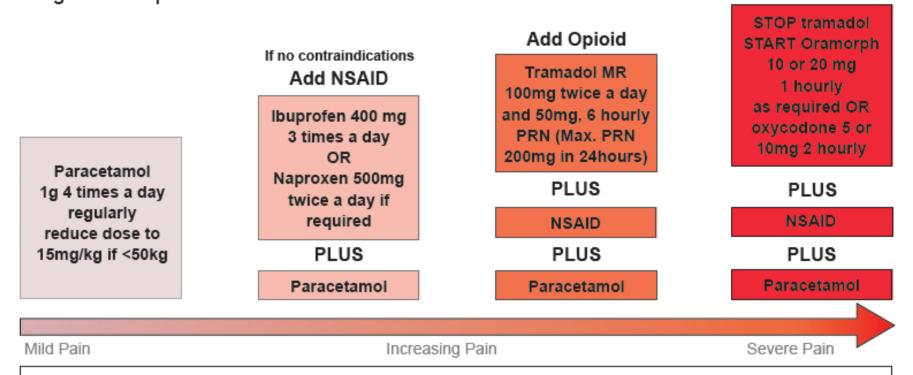
- Minnesota Multiphasic Personality Inventory (MMPI)
- Beck Depression Inventory.

Other tools

- Mainly used for chronic pain
- Electromyography and Nerve Conduction Studies
- Distinguish between neurogenic and myogenic disorders.
- Useful for confirming the diagnosis of entrapment syndromes, radicular syndromes, neural trauma, and polyneuropathies,

Treatment of Pain

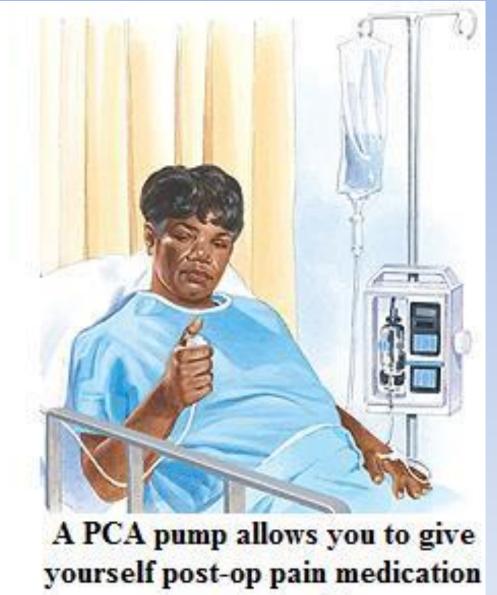
- 1- pharmacological treatment:
- Might be oral or injectable or as patches.
- NSAIDs, Paracetamol, Opioids, Neuroleptics, antispasmodics, corticosteroids.
- Good for acute and chronic pain



Oral Analgesia & Post Operative Nausea & Vomiting

Adult Oral Analgesic Step Ladder (Acute Pain) Raigmore Hospital

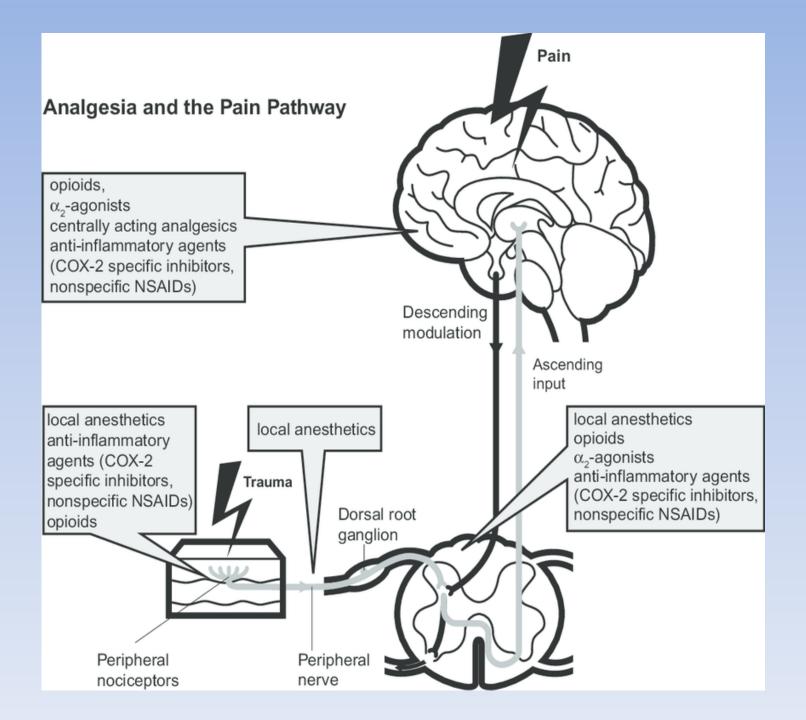
Opioid



- IV paracetamol should be used when the patient is not reliably absorbing fluids.
- For patients at risk of respiratory despression, consider tramadol in preference to morphine.
- Patients with severe pain require parenteral opioids. Use PCA or the subcutaneous algorithm.

Responsibility: Acute Pain Team Last update : Oct 2018 Review date : Oct 2020

Medical Illustration.November 2018-00247


PCA

as you need it.

Treatment of Pain

- 2- Peripheral and neuraxial nerve blocks.
- For acute and chronic pain
- Uses local anesthetics, steroids, alpha 2 agonists, and opioids,

Common blocks

Upper Extremity PNBs	Lower Extremity PNBs	Truncal Blocks
Cervical paravertebral	Subgluteal sciatic	Thoracic paravertebral
Interscalene	Femoral	Transverse abdominis plane
Interscalene	Popliteal	Ilioinguinal
Infraclavicular	Saphenous	
Axillary	Ankle	

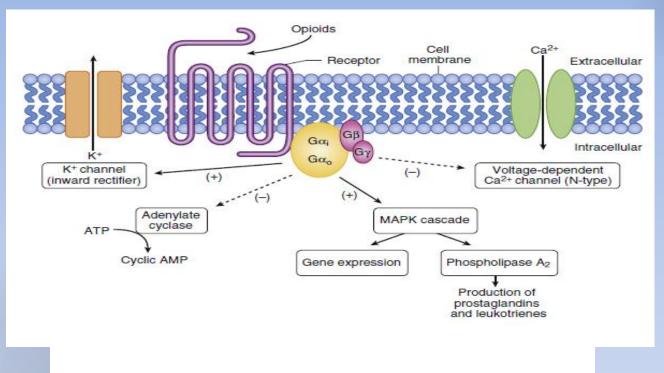
Treatment of Pain

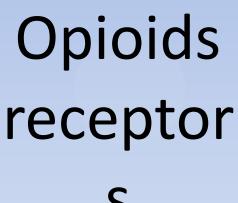
- 3- other tools for chronic pain
- Physiotherapy.
- Acupuncture.
- Cryoanalgesia.
- Radio-frequency ablation.
- Chemical neurolysis.

Opioids in a nutshell

BOX 31-1 Classification of Opioid Compounds

NATURALLY OCCURRING


Morphine Codeine Papaverine Thebaine


SEMISYNTHETIC

Heroin Dihydromorphone, morphinone Thebaine derivatives (e.g., etorphine, buprenorphine)

SYNTHETIC

Morphinan series (e.g., levorphanol, butorphanol) Diphenylpropylamine series (e.g., methadone) Benzomorphan series (e.g., pentazocine) Phenylpiperidine series (e.g., meperidine, fentanyl, sufentanil, alfentanil, remifentanil)

opioids produce euphoria, tranquility, and other alterations of mood

- A significant feature of opioid analgesia is that it is not associated with loss of consciousness.
- Although nociceptive pain usually is responsive to opioid analgesics, neuropathic pain typically responds poorly to opioid analgesics and may require larger doses.

Effect on body systems

- 1-Miosis due to parasympathetic system activation
- 2-purities (Itching)
- 3- Bradycardia except
- meperdine (it has anticholinergic effects: 1-Mydriasis
- 2- no bradycardia and might even cause tachycardia
- 4- histamine release especially meperdine
- 5- vomiting and constipation

Hypercapnic responses	↓ I
hypoxic ventilatory drive	•
ETCO2	
RR ***********************************	111
Tidal Volume	

Tolerance to opioids

- Tolerance develop most likely after long term use of opioids but can occur after short term use only.
- Tolerance to opioids might lead to hyperalgesia!!!!!!
- Minimal tolerance to
- 1-meiosis
- 2- constipation

TABLE 31-5 PHYSICOCHEMICAL AND PHARMACOKINETIC DATA OF COMMONLY USED OPIOID AGONISTS						
	Morphine	Fentanyl	Sufentanll	Alfentanli	Remifentanli	
р <i>К</i> а	8.0	8.4	8.0	☆ 6.5	☆7.1	
% Un-ionized at pH 7.4	23	<10	20	*90	67?	
Octanol/H ₂ O partition coefficient	1.4	813	1778	145	17.9	
% Bound to plasma protein	20-40	84	93	92	80?	
Diffusible fraction (%)	16.8	1.5	1.6	8.0	13.3?	
t _{Via} (min)	1-2.5	1-2	1-2	1-3	0.5-1.5	
t _{MB} (min)	10-20	10-30	15-20	4-17	5-8	
t _{Vrr} (hr)	2-4	2-4	2-3	1-2	************	
Vd _c (L/kg)	0.1-0.4	☆0.4-1.0	0.2	0.1-0.3	0.06-0.08	
Vd _{ss} (L/kg)	3-5	3-5	2.5-3.0	0.4-1.0	0.2-0.3	
Clearance (mL/min/kg)	15-30	10-20	10-15	4.9	*30-40	
Hepatic extraction ratio	0.6-0.8	0.8-1.0	0.7-0.9	0.3-0.5	XNA	

Morphine is principally metabolized by conjugation in the liver, but the kidney plays a key role in the extrahepatic metabolism of morphine.

- Onset: 1-2 min (IV)
- Peak effect: 3-5 min (IV) vs 20 min vs 90 minutes???
 (different in multiple references)
- M6G accounts for nearly 10% of morphine metabolite and is a more potent μ-receptor agonist than morphine, with a similar duration of action.
- Especially in patients with renal dysfunction, the accumulation of M6G can lead to an increased incidence of adverse effects, including respiratory depression.

Fentanyl

- Fentanyl is relatively long acting, in large part because of this widespread distribution in body tissues.
- Norfentanyl, the primary metabolite
- Anesthetic induction is usually achieved by combining a loading dose of fentanyl (2 to 6 µg/kg)

Alfentanil

- At physiologic pH, alfentanil is mostly (90%) un-ionized because of its relatively low pKa (6.5).
- Very fast onset

Sufentanil

- is twice as lipid soluble as fentanyl and is highly bound (93%) to plasma proteins, including α1-acid glycoprotein.
- some studies showed sufentanil is much better than morphine in decreasing M&Ms during and after cardiac surgeries.

Remifentanil

- remifentanil is structurally unique because of its ester linkages.
- Remifentanil's ester structure renders it susceptible to hydrolysis by blood- and tissue-nonspecific esterases that results in rapid metabolism and rapid reduction of blood concentrations after cessation of infusion
- Associated with emergence from remifentanil anesthesia, the need for alternative analgesic therapies should be anticipated, and these medications should be administered in a timely fashion.
- Remifentanil is not a good substrate for pseudocholinesterase and therefore is not influenced by pseudocholinesterase deficiency

TABLE 31-7 APPROXIMATE OPIOID LOADING (BOLUS) DOSES, MAINTENANCE INFUSION RATES, AND ADDITIONAL MAINTENANCE DOSES FOR TOTAL INTRAVENOUS ANESTHESIA

	Loading	Maintenance	Additional
	Dose (µg/kg)	Infusion Rate	Boluses
Alfentanil	25-100	0.5-2 μg/kg/min	5-10 μg/kg
Sufentanil	0.25-2	0.5-1.5 μg/kg/hr	2.5-10 μg
Fentanyl	4-20	2-10 μg/kg/hr	25-100 µg
Remifentanil	1-2	0.1-1.0 μg/kg/min	0.1-1.0 µg/kg

OTHER APPLICATIONS OF OPIOIDS

- Transdermal Therapeutic System
- Iontophoresis
- Transmucosal Drug Delivery (oropharynx and nasopharynx) (Sublingual, intranasal, inhaled, rectal)
- Extended-Release Epidural Morphine
- Orally:
- Despite the high first-pass metabolism of opioid analgesics

MEPERIDINE (PETHIDINE)

- Meperidine sometimes causes excitation of the CNS that is characterized by tremors, muscle twitches, and seizures largely caused by accumulation of a metabolite, normeperidine. (effect of renal failure)
- Has well-known local anesthetic properties.
- Meperidine (12.5 to 35 mg) is also effective for prevention and treatment of postoperative shivering

OPIOID ANTAGONISTS

- Clinically, opioid antagonists are used to reverse:
- 1-respiratory depression
- 2nausea and vomiting,
- 3- pruritus,
- 4-urinary retention
- 5-rigidity,
- 6- biliary spasm

- NALOXONE
- -it can enhance analgesia !!!!!
- Side effects (increases in heart rate and blood pressure), pulmonary edema)
- The onset of action of intravenous naloxone is rapid (1 to 2 minutes), and t½ and duration of effect are short, approximately 30 to 60 minutes.
- Also by Intratracheal administration
- Opioid reversal may be particularly hazardous in patients with pheochromocytoma or chromaffin tissue Tumors.
- Recurrence of respiratory depression after naloxone results from the short t½ of naloxone

Thank you