Reproductive Physiology

Spermatogenesis

At birth: There are spermatogonia only (No further division or development until puberty

At puberty: GnRH level increases.

Part	Secretion
Seminal vesicles	Mucoid material containing fructose, citric acid, nutrients, prostaglandins and fibrinogen
Prostate	Milky alkaline fluid containing Ca, citrate ion, phosphate ion, a clotting enzyme and profibrinolysin
Coming from Epididymis – Vas	Sperms with fluid containing nutrients, estrogens and testosterone, enzymes
Bulbourethral glands	Mucous secretions

- * FSH acts on the Sertoli cells to maintain spermatogenesis. Inhibin (produced by the Sertoli cells) inhibits the secretion of FSH from the anterior pituitary. (LOOP)
- * LH acts on the Leydig cells to promote testosterone synthesis. Testosterone inhibits the secretion of LH (more LOOPS)

*More actions of Testosterone:

- ✓ Differentiation of epididymis, vas deferens, seminal vesicles, and growth of penis and prostate
- ✓ Spermatogenesis in Sertoli cells
- ✓ Deepening of voice
- ✓ Increased muscle mass
- ✓ Male hair pattern and baldness

- ✓ Sebaceous gland activity (acne formation)
- ✓ Increases bone density, Ca and Na retention, basal metabolism, RBC numbers.
- *Hypogonadism = Non-functional testis = no male characteristics
- * Cryptorchidism: Failure of the testes to descend in the scrotum

Oogenesis:

At embryonic life: Many primary oocytes (which is an ovum arrested in prophase 1 covered with granulosa cells)

At birth: There are 1-2 million of these and they will NOT increase further

At puberty: each month one oocyte will

Completes meiosis 1

1ry oocyte 2ry oocytes arrested at metaphase 2 + one polar body + the gain of theca cells It finishes meiosis 2 + second polar body will form

*Actions of estrogen:

- ✓ Has both negative (default) and positive (during midcycle) feedback effects on FSH and LH secretion.
- ✓ Causes maturation and maintenance of the fallopian tubes, uterus, cervix, and vagina.
- ✓ Causes the development of female secondary sex characteristics at puberty.
- ✓ Causes the development of the breasts.
- ✓ Up-regulates estrogen, LH, and progesterone receptors.
- ✓ Causes proliferation and development of ovarian granulosa cells.
- ✓ Maintains pregnancy.

^{*}Eventually polar bodies will degenerate

^{*}FSH stimulates granulosa cells to secrete estrogens

^{*}LH stimulates theca cells to secrete androgens (which can diffuse to granulosa cells and get converted into estrogens)

✓ Uterine contraction

*Actions of progesterone

- ✓ Has negative feedback effects on FSH and LH secretion during luteal phase.
- ✓ Maintains secretory activity of the uterus during the luteal phase.
- ✓ Maintains pregnancy.
- ✓ Raises the uterine threshold to contractile stimuli during pregnancy.
- ✓ Participates in development of the breasts

Ovarian Cycle

Follicular phase (days 0-14)

- ✓ A primordial follicle develops to the graafian (preovulatory mature) stage.
- ✓ LH and FSH receptors are up-regulated in theca and granulosa cells.
- ✓ Estradiol levels increase and cause proliferation of the uterus.
- ✓ FSH and LH levels are suppressed by the negative feedback effect of estradiol on the anterior pituitary.
- ✓ Progesterone levels are low.

Ovulation (day 14)

- ✓ A burst of estradiol synthesis at the end of the follicular phase has a positive feedback
- ✓ effect on the secretion of FSH and LH (LH surge).
- ✓ Ovulation occurs because of the estrogen-induced LH surge.
- ✓ Estrogen levels decrease just after ovulation (but rise again during the luteal phase

Luteal phase (days 14-28)

- ✓ The corpus luteum begins to develop, and it synthesizes estrogen and progesterone.
- ✓ Vascularity and secretory activity of the endometrium increase to prepare for receipt of a fertilized egg.
- ✓ If fertilization does not occur, the corpus luteum regresses at the end of the luteal phase.
- ✓ As a result, estradiol and progesterone levels decrease abruptly.

Menses (days 0-4)

- ✓ The endometrium is sloughed because of the abrupt withdrawal of estradiol and progesterone.
- *Amenorrhea = absence of menstrual cycle
- *Menor<u>rhagia</u> = <u>Heavy bleeding</u> of menstruation
- *Hypomenorrhea = Light (low) menstrual blood
- *Dysmenorrhea = Painful menstruation

Pregnancy

Fertilization: One sperm reaches the ovum first \rightarrow Enzymes digest corona radiata \rightarrow Acrosomal enzymes digest zona pellucida and ZP3 is activated \rightarrow Fusion of the two nuclei + no more sperms allowed to enter

Cleavage and Implantation

Day	Name	More info
Day 1	1st cleavage	2-cell stage
Day 2	_	4-cell stage
Day 3-4	morula	8-cell uncompacted
Day 4	morula	8-cell compacted
Day 5	Early blastocyst	Has blastocyst cavity
Day 8	Late blastocyst	Actual implantation
		Composed of trophoblast +
		inner cell mass

- *Trophoblastic projections (cords) form part of the placenta
- *Decidua is part of the endometrium surrounding implanted fetus
- *Inner cell mass gives rise to all kinds of cells
- *There are two umbilical arteries sending unoxygenated blood and one vein bringing oxygenated blood
- *Placenta has nutritive, protective, and endocrine roles for the embryo
- *It secretes hCG which keeps corpus luteum alive till week 13-17
- *hCG peaks at around 10 weeks

*Changes in the pregnant women:

- ✓ Increased size of uterus, vagina, breast, etc
- \checkmark Higher metabolic rate, increased appetite, and weight gain
- ✓ Increased retention of Na, Cl, water → Higher blood volume
- *Pre-eclampsia = pregnancy hypertension + proteinuria (usually)

- *Eclampsia = Pre + seizures, kidney and liver failure
- *Factors that induce parturition(normal labor):
 - ✓ Increased Estrogen/progesterone ratio
 - ✓ Oxytocin (mother and fetus), corticosteroids, prostaglandins (from fetus)
 - ✓ Fetus moving and stretching of uterus and cervix → positive feedback
 - ✓ Abdominal muscles contraction

*Lactation:

- ✓ Prolactin levels increase steadily during pregnancy because estrogen stimulates prolactin secretion from the anterior pituitary.
- ✓ Lactation does not occur during pregnancy because estrogen and progesterone block the action of prolactin on the breast.
- ✓ After parturition, estrogen and progesterone levels decrease abruptly and lactation occurs.
- ✓ Lactation is maintained by suckling, which stimulates both oxytocin and prolactin secretion.
- ✓ Ovulation is suppressed as long as lactation continues because prolactin inhibits hypothalamic GnRH secretion.

Organ System Development

Pre-natal	Post-natal
Respiratory system not working	Works within 10 minutes
Low blood flow to lungs and high	The opposite (no placenta)
blood flow to placenta	, i
Spinal cord reflexes are present	Nervous system fully develops
High nervous functions are not	Myelination is completed at 1 year
developed	age
GIT: excrete meconium only	Neonates can digest and absorb just
	like children but use starch and
	absorb fat less efficiently

^{*}Respiratory distress syndrome: No enough surfactant

Good Luck

^{*}Closure of foramen ovale, ductus arteriosus, and ductus venosus takes place after birth

^{*}Indomethacin (prostaglandin antagonist) can treat patent ductus arteriosus

^{*}Misusing oxygen therapy for premature infants can cause blindness

^{*}After birth, pulmonary resistance decreases, right heart pressure decreases, while left heart and systemic pressure increases.