Viral hemorrhagic fevers (VHFs)

By : Assis. Prof Nader Alaridah MD, PhD
Overview

• Viral hemorrhagic fevers (VHFs) are a group of illnesses caused by four families of viruses. *Arenaviridae*, *Bunyaviridae*, *Filoviridae* and *Flaviviridae*

• Diffuse Damage to overall vascular system.

• Symptoms often accompanied by hemorrhage.

• Some VHFs cause mild disease, but some, like Ebola or Marburg, cause severe disease and death.
Quick Overview: Who are they?

• **Arenaviridae**
 • Lassa Fever
 • Argentine HF (Junin)
 • Bolivian HF (Machupo)
 • Brazilian HF (Sabia)
 • Venezuelan HF (Guanarito)

• **Bunyaviridae**
 • Rift Valley Fever (RVF)
 • Crimean Congo HF (CCHF)
 • Hantavirus (Hemorrhagic Fever with Renal Syndrome (HFRS))
 • Hantavirus Pulmonary Syndrome (HPS)

• **Filoviridae**
 • Marburg
 • Ebola

• **Flaviviridae**
 • Yellow Fever
 • Dengue Fever
 • Omsk HF
 • Kyasanur Forest Disease
Quick Overview: How do we get infected?

• Rodents & Arthropods, both reservoir & vector
 • Bites of infected mosquito or tick
 • Inhalation of rodent excreta
 • Infected animal product exposure

• Person-to-Person
 • Blood/body fluid exposure
 • Airborne potential for some arenaviridae, filoviridae
Common features

• Enveloped Lipid-encapsulated
• Single-strand RNA
• Zoonotic (animal-borne)
• Geographically restricted by host
• Persistent in nature (rodents, bats, mosquitoes, ticks, livestock, monkeys, and primates)
• Survival dependent on an animal or insect host, for the natural reservoir
Arenaviridae

- Junin virus: Argentine hemorrhagic fever
- Machupo virus: Bolivian hemorrhagic fever
- Guanarito virus: Venezuelan hemorrhagic fever
- Lassa virus: Lassa fever- Nigeria
- Sabia virus: Brazilian hemorrhagic fever
Arenaviridae Transmission

• Virus transmission and amplification occurs in rodents
• Shed virus through urine, feces, and other excreta
• Human infection
 • Contact with excreta
 • Contaminated materials
 • Aerosol transmission
• Person-to-person transmission
Arenaviridae in Humans

- Incubation period 10–14 days
- Fever and malaise 2–4 days
- Hemorrhagic stage
 - Hemorrhage, leukopenia, thrombocytopenia
 - Neurologic signs
Arenaviridae: Lassa Fever

- First seen in Lassa, Nigeria in 1969.
- Now in all countries of West Africa
 - 5-14% of all hospitalized febrile illness
- Rodent-borne (*Mastomys natalensis*)
- Interpersonal transmission
 - Direct Contact
 - Sex
 - Breast Feeding
Lassa Fever

• Distinguishing Features
 • Gradual onset
 • Retro-sternal pain
 • Exudative pharyngitis
 • Hearing loss in 25% may be persistent
 • Spontaneous abortion
• Mortality 1-3% overall (up to 50% in epidemics)
• Therapy: Ribavirin
Bunyaviridae

- Rift Valley Fever virus
- Crimean-Congo Hemorrhagic Fever virus
- Hantavirus

L-segment codes for an L-protein (the RNA dependent RNA polymerase);

M segment codes for two surface glycoproteins G1 and G2 which form the envelope spikes;

S segment codes for an N-protein (nucleocapsid protein).
Bunyaviridae Transmission

- Arthropod vector
 - Exception – Hantaviruses
- RVF – *Aedes* mosquito
- CCHF – Ixodid tick (*Hyalomma*)
- Hantavirus – Rodents
- Less common
 - Aerosol
 - Exposure to infected animal tissue
Bunyaviridae

- Transmission to humans
 - Arthropod vector (RVF, CCHF)
 - Contact with animal blood or products of infected livestock
 - Rodents (Hantavirus)
 - Laboratory aerosol
 - Person-to-person transmission with CCHF
Rift Valley Fever

• Asymptomatic or mild illness in humans
• Distinguishing Characteristics
 • Hemorrhagic complications rare (<5%)
 • Vision loss (retinal hemorrhage, vasculitis) in 1-10%
• Overall mortality 1%
• Therapy: Ribavirin?
Crimean-Congo Hemorrhagic Fever

• Distinguishing features
 • Abrupt onset
 • Most humans infected will develop hemorrhagic fever
 • Profuse hemorrhage

• Mortality 15-40%
• Therapy: Ribavirin
Bunyaviridae: Hantaviruses

• Transmission to humans:
 • Exposure to rodent saliva and excreta
 • Inhalation
 • Bites
 • Ingestion in contaminated food/water (?)
 • Person-to-person (Andes virus in Argentina)
Hemorrhagic Fever with Renal Syndrome (HFRS)

• Distinguishing Features
 • Insidious onset
 • Intense headaches,
 • Blurred vision
 • Kidney failure
 • (causing severe fluid overload)

• Mortality: 1-15%
Flaviviridae

• Dengue virus
• Yellow Fever virus
• Omsk Hemorrhagic Fever virus
• Kyassnur Forest Disease virus
Flaviviridae Transmission

- Arthropod vector
- Yellow Fever and Dengue viruses
 - *Aedes aegypti*
 - Sylvatic cycle
 - Urban cycle
- Kasanur Forest Virus
 - Ixodid tick
- Omsk Hemorrhagic Fever virus: Fever Lasting sequela
 - Muskrat urine, feces, or blood
Yellow Fever

• Distinguishing features
 • Biphasic infection
 • Common hepatic involvement & jaundice
• Mortality: 15-50%
Flaviviridae: Dengue

• Dengue Fever (DF) / Fatality: <1%
• Dengue Hemorrhagic Fever (DHF) / Fatality: 5-6%
 • Dengue Shock Syndrome (DSS) / Fatality 12-44%

• Four distinct serotypes
 • DEN-1, DEN-2, DEN-3, DEN-4

• Distinguishing Features
 • Sudden onset
 • Eye pain
 • Rash
 • Complications/sequelae uncommon

• Illness is severe in younger children
Omsk Hemorrhagic Fever

• Distinguishing Features
 • Acute Onset
 • Biphasic infection

• Complications
 • Hearing loss
 • Hair loss
 • Psycho-behavioral difficulties

• Mortality: 0.5 – 3%
Flaviviridae: Kyanasur Forest

- Distribution: limited to Karnataka State, India
- Haemaphysalis vector
- Distinguishing Features
 - Acute onset
 - Biphasic
- Case-fatality: 3-5% (400-500 cases annually)
Filoviridae

- Ebola
 - Ebola-Zaire
 - Ebola-Sudan
 - Ebola-Ivory Coast
 - Ebola-Bundibugyo
 - (Ebola-Reston)
- Marburg
Filoviridae Transmission

• Reservoir is UNKNOWN
 • Bats implicated with Marburg

• Intimate contact

• Nosocomial transmission
 • Reuse of needles and syringes
 • Exposure to infectious tissues, excretions, and hospital wastes

• Aerosol transmission
 • Primates
Filoviridae: Ebola

• Rapidly fatal febrile hemorrhagic illness

• Transmission:
 • bats implicated as reservoir
 • Person-to-person
 • Nosocomial

• Five subtypes
 • Ebola-Zaire, Ebola-Sudan, Ebola-Ivory Coast, Ebola-Bundibugyo, Ebola-Reston
 • Ebola-Reston imported to US, but only causes illness in non-human primates

• Human-infectious subtypes found only in Africa
Filoviridae: Ebola

• Distinguishing features:
 • Acute onset
 • GI involvement / Weight loss
 • 25-90% case-fatality
Filoviridae: Marburg

• Distinguishing features
 • Sudden onset
 • Chest pain
 • Maculopapular rash on trunk
 • Pancreatitis
 • Jaundice

• 21-90% mortality
Filoviridae Humans

• Most severe hemorrhagic fever
• Incubation period: 4–10 days
• Abrupt onset
 • Fever, chills, malaise, and myalgia
• Hemorrhage and DIC
• Death around day 7–11
• Painful recovery
Common Pathophysiology

• Small vessel involvement
 • Increased vascular permeability
 • Multiple cytokine activation
 • Cellular damage
 • Abnormal vascular regulation:
 • Early -> mild hypotension
 • Severe/Advanced -> Shock

• Viremia
 • Macrophage involvement
 • Inadequate/delayed immune response
Common Clinical Features: Early/Prodromal Symptoms

• Fever
• Myalgia
• Malaise
• Fatigue/weakness
• Headache

• Dizziness
• Arthralgia
• Nausea
• Non-bloody diarrhea
Common Clinical Features: Progressive Signs

• Conjunctivitis
• Facial & thoracic flushing
• Pharyngitis
• Exanthsms
• Periorbital edema
• Pulmonary edema

• Hemorrhage
 • Subconjunctival hemorrhage
 • Ecchymosis
 • Petechiae
 • But the hemorrhage itself is rarely life-threatening.
Common Clinical Features: Severe/End-stage

- Multisystem compromise
- Profuse bleeding
- Consumptive coagulopathy/DIC
- Encephalopathy
- Shock
- Death
Lab studies

• Complete Blood Count
 • Leucopenia, leucocytosis, thrombocytopenia, hemoconcentration, DIC

• Liver enzymes

• Proteinuria universal

• Serological tests – Ab not detected acute phase; Direct examination blood/tissues for viral Ag enzyme immunoassay.
 • Immunohistochemical staining liver tissue
 • Virus isolation in cell culture
 • RT-PCR sequencing of virus
 • Electron microscopy specific and sensitive
Treatment

- Supportive care:
 - Fluid and electrolyte management
 - Hemodynamic monitoring
 - Ventilation and/or dialysis support
 - Steroids for adrenal crisis
 - Anticoagulants, IM injections,
 - Treat secondary bacterial infections
Treatment

- Manage severe bleeding complications
 - Cryoprecipitate (concentrated clotting factors)
 - Platelets
 - Fresh Frozen Plasma
 - Heparin for DIC

- Ribavirin in vitro activity vs.
 - Lassa fever
 - New World Hemorrhagic fevers
 - Rift Valley Fever
 - No evidence to support use in Filovirus or Flavivirus infections
Prevention

• Nosocomial: Complete equipment sterilization & protective clothing
• House to house rodent trapping
• Better food storage & hygiene
• Cautious handling of rodent if used as food source
• If human case occurs
 • Decrease person-to-person transmission
 • Isolation of infected individuals
Vaccination

- Argentine and Bolivian HF
 - PASSIVE IMMUNIZATION
 ✓ Treat with convalescent serum containing neutralizing antibody or immune globulin

- Yellow Fever
 - ACTIVE IMMUNIZATION
 ✓ Travelers to Africa and South America
 - Experimental vaccines under study
 • Argentine HF, Rift Valley Fever, Hantavirus and Dengue HF
Why do VHF\`s make good Bioweapons?

- Disseminate through aerosols
- Low infectious dose
- High morbidity and mortality
- Cause fear and panic in the public
- No effective vaccine
- Available and can be produced in large quantity
- Research on weaponization has been conducted
The END