

Regulation of hemoglobin function

Prof. Mamoun Ahram Hematopoietic-lymphatic system 2020

Allosteric regulation

Allosteric activation

The active site becomes available to the substrates when a regulatory molecule binds to a different site on the enzyme.

© 2011 Podison Education, In-

Allosteric deactivation

The active site becomes unavailable to the substrates when a regulatory molecule binds to a different site on the enzyme.

Allosteric effectors

- The major heterotropic effectors of hemoglobin
 - Hydrogen ion,
 - Carbon dioxide
 - 2,3-Bisphosphoglycerate
 - Chloride ions
 - Carbon monoxide

The effect of pH

- The binding of H+ to hemoglobin promotes the release of O₂ from hemoglobin and vice versa.
- This phenomenon is known as the Bohr effect.

Mechanism of Bohr effect

- Increasing H+ causes the protonation of key amino acids, including the last histidine residue of the β chains (His146).
- The protonated histidine is attracted to, and stabilized by, a salt bridge to an aspartate within the same chain.
 - The pKa of His146 is reduced from 7.7 in the R state to 7.3 in the T state allowing for protonation.
- Electrostatic interaction also occurs between the carboxylic group of His146 and a lysine of the α chain.
- This favors the deoxygenated form of hemoglobin.

Where do protons come from?

$$CO_2 + H_2O \iff H_2CO_3 \iff HCO_3^- + H^+$$

- CO₂ and H+ are produced at high levels in metabolically active tissues by carbonic anhydrase.
- This is accompanied by generation of H+, facilitating the release of O₂.
- In the lungs, the reverse effect occurs and high levels of O2 cause the release of CO₂ from hemoglobin.

Effect of CO2

(Mechanism #1 - production of protons)

$$CO_2 + H_2O \iff H_2CO_3 \iff HCO_3^- + H^+$$

Mechanism #2- formation of

carbamates

- Hemoglobin transports some CO₂ directly.
- When the CO_2 concentration is high, it combines with the free α -amino terminal groups to form carbamate and producing negatively-charged groups R

Carbamate

The increased number of negatively-charged residues increases the number of electrostatic interactions that stabilize the T-state of hemoglobin.

Contribution of both mechanisms

- About 75% of the shift is caused by H+.
- About 25% of the effect is due to the formation of the carbamino compounds.

How do we know that? An increase in CO₂ tension will shift the oxygen dissociation curve to the right, even when the pH is held constant.

Transport of CO₂ into lungs

- Approximately 60% of CO₂ is transported as bicarbonate ion, which diffuses out of the RBC.
- About 30% of CO₂ is transported bound to N-terminal amino groups of the T form of hemoglobin.
- A small percentage of CO₂ is transported as a dissolved gas.

The movement of CO₂ in/out of cells does not change the pH, a phenomenon called <u>isohydric shift</u>, which is partially a result of hemoglobin being an effective buffer.

Other allosteric effectors

Chloride shift

- Bicarbonate diffuses out of the red blood cells into the plasma in venous blood and visa versa in arterial blood.
- Chloride ion always diffuses in an opposite direction of bicarbonate ion in order to maintain a charge balance.
- This is referred to as the " chloride shift".

(a) Oxygen release and carbon dioxide pickup at the tissues

(b) Oxygen pickup and carbon dioxide release in the lungs

Effect of chloride ions

- Chloride ions interact with N-terminus of $\alpha 2$ chain and Arg141 of $\alpha 1$ chain.
- Increasing the concentration of chloride ions (Cl-) shifts the oxygen dissociation curve to the right (lower affinity)

2,3-bisphosphoglycerate (2,3-BPG)

- 2,3-Bisphosphoglycerate (2,3-BPG) is produced as a by-product of glucose metabolism in the red blood cells.
- BPG binds to hemoglobin and reduces its affinity towards oxygen.

BPG –hemoglobin interaction

- BPG binds in the central cavity of deoxyhemoglobin only in a ratio of 1 BPG/hemoglobin tetramer.
- This binding increases the energy needed to transform hemoglobin from the T state to R state.
- Bound, 2,3-BPG reduces binding of oxygen to hemoglobin and facilitates oxygen release.

BPG forms salt bridges with the terminal amino groups of both β chains and with a lysine and a histidine.

Effect of 2,3-BPG on oxygen binding

- In the presence of 2,3-BPG, the p50 of oxyhemoglobin is 26 torr.
- If 2,3-BPG were not present p50 is close to 1 torr.
- The concentration of 2, 3-BPG increases at high altitudes (low O₂) and in certain metabolic conditions making hemoglobin more efficient at delivering oxygen to tissues.

2,3-BPG in transfused blood

- Storing blood results in a decrease in 2,3-PBG (and ATP), hence hemoglobin acts as an oxygen "trap", not an oxygen transporter.
- Transfused RBCs are able to restore their depleted supplies of 2,3-BPG in 6–24 hours.
- Severely ill patients may be compromised.
- Both in 2,3-PBG and ATP are rejuvenated.

Effect of temperature

- An increase in temperature decreases oxygen affinity and therefore increases the P50.
- Temperature affects the O₂ binding of both myoglobin and hemoglobin.
- Increased temperature also increases the metabolic rate of RBCs, increasing the production of 2,3-BPG, which also facilitates oxygen unloading from HbO₂.

Other considerations

Fetal hemoglobin

- Fetal Hb (HbF) has higher affinity towards oxygen than adult hemoglobin (HBA).
 - Θ HbA = α 2 β 2
 - Θ HbF = $\alpha 2\gamma 2$
- A His residue in the β subunit is replaced by a Ser in the γ subunit of HbF.
 - Sibridge, 2,3-BPG nce Ser cannot form a salt binds more weakly to HbF than to HbA.

Effect of CO

In addition to competing with oxygen in binding to hemoglobin, affinity of Hb-CO towards oxygen increases resulting in less oxygen unloading in peripheral tissues (Hb+O₂) versus (Hb+CO)

(Hb + O₂) versus (Hb + O₂ + CO)

Relevant information

- Increasing the amount of CO in inspired air to 1% and above would be fatal in minutes.
- Due to pollutants, the concentration of COHb in the blood is usually 1% in a non-smoker.
- In smokers, COHb can reach up to 10% in smokers.
- If this concentration of COHb in the blood reaches 40% (as is caused by 1% of CO in inspired air), it would cause unconsciousness initially, followed by death.

Summary

