Hematopoietic Growth Factors

<table>
<thead>
<tr>
<th>Drug</th>
<th>MOA</th>
<th>Administration</th>
<th>Uses</th>
<th>Side Effects</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **Recombinant Human Erythropoietin (epoetin-α)** | - Stimulates erythroid proliferation and differentiation by interacting with JAK/STAT cytokine receptor on red cell progenitor
- Releases reticulocytes from the bone marrow | - IV & subcutaneous injection
- In anemia of chronic failure: 50-150 IU/kg three times a week
- In primary bone marrow disorders and secondary anemias: patients require higher doses (100-500 IU/kg) | 1. Anemia of chronic renal failure (most likely to benefit): failure to respond is usually due to iron or folic acid deficiency
2. Primary bone marrow disorders and secondary anemias: plastic anemia, myeloproliferative and myelodysplastic disorders, multiple myeloma and bone marrow malignancies, anemia of chronic inflammation, AIDS and cancer
*Response is generally incomplete, better with low baseline erythropoietin levels
3. Anemia of zidovudine treatment
4. Anemia of prematurity
5. Iron overload
6. Unethically, used by athletes | *Toxicity:
- Due to rapid increases in hematocrit and hemoglobin: hypertension and thrombotic complications
- Allergic reactions are infrequent and mild | -34-39 kDa glycoprotein
- Was the first isolated growth factor
- Originally purified from urine of patients with severe anemia → elevated in most anemias but lowered in anemia of renal failure
- Produced in a mammalian cell expression system
- Half-life after IV administration is 4-13 hours
- Darbepoetin α has longer half life
- It is not cleared by dialysis |
| **Megakaryocyte GFs** | | | | | |
| IL-11 | - Acts through a specific receptor
→ Stimulates the growth of lymphoid and myeloid cells and primitive megakaryocytic progenitors
→ Increases the number of peripheral platelets and neutrophils | IV & S.C injection | - Thrombocytopenia: for the secondary prevention of thrombocytopenia in patients receiving cytotoxic chemotherapy for nonmyeloid cancers (Platelets transfusion is an alternative) | - Toxicity: Fatigue, headache, dizziness, anemia, dyspnea, transient atrial arrhythmias and hypokalemia | - 65-85 kDa protein
- Produced by fibroblasts and stromal cells in the bone marrow
- Half-life is 7-8 hours after s.c injection.
- Recombinant form of IL-11 → Produced by expression in E.coli |
| Oprelvekin | IV & S.C injection | | | | |
Hematopoietic Growth Factors

<table>
<thead>
<tr>
<th>Drug</th>
<th>MOA</th>
<th>Administration</th>
<th>Uses</th>
<th>Side Effects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megakaryocyte GFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Thrombopoietin | - Independently stimulates the growth of primitive megakaryocytic progenitors
- Stimulates mature megakaryocytes.
- Activates mature platelets to respond to aggregation-inducing stimuli | | | - Toxicity: Fatigue, headache, dizziness, anemia, dyspnea, transient atrial arrhythmias and hypokalemia | - 65-85 kDa glycoprotein
- Recombinant form is produced by expression in human cells.
- Commercial preparations: **Eltrombopag & Romiplostim** |
| **Myeloid GFs** | | | | | |
| rHuG-CSF (Filgrastim) | - Works on JAK/STAT receptors. - Stimulates proliferation and differentiation of progenitors committed to the neutrophil lineage
- Activates the phagocytic activity of mature neutrophils and prolongs their survival in the circulation
- Mobilizes hemopoietic stem cells into the peripheral circulation | - In mobilization of **PBSCs**: Patients or donors are given GM-CSF for 4 days, then leukapheresis, CD34 is used as a marker for the stem cells. At least 5x10^6 CD34 cells/kg should be reinfused to ensure effective engraftment | 1. Cancer Chemotherapy-Induced Neutropenia: G-CSF accelerates neutrophil recovery, leading to reduced episodes of febrile neutropenia, need for antibiotics and days of hospitalization, but do not improve survival.
(G-CSF is reserved for risky patients)
(GM-CSF can produce fever on its own) | *Toxicity:*
- Bone pain
- Fever, malaise, arthralgia, myalgia.
- Capillary Leak Syndrome: peripheral edema, pleural or pericardial effusions
- Allergic reactions.
- Splenic rupture. | *In Autologous Stem Cell Transplantation: High dose chemotherapy regimens cause extreme myelosuppression → counteracted by reinfusion of the patient’s own hematopoietic stem cells which are collected before the chemotherapy
- Originally purified from cultured human cells
- Produced in a bacterial cell expression system – 175 amino acids, 18 kD mol. wt.
- Has a half-life of 2-7 hours.
- Pegfilgrastim: Filgrastim covalently conjugated with polyethylene glycol (Injected once per chemotherapy cycle) |
| rHuGM-CSF (Sargramostim) | Has broader actions. Works on JAK/STAT receptors
Stimulates proliferation and differentiation of early and late granulocytic progenitor cells as well as erythroid and megakaryocyte progenitors.
- With interleukin-2, also stimulates T-cell proliferation.
- Mobilizes peripheral blood stem cells, but less than G-CSF | | | | |

Done by: Rama Abbady